Question

Let Y be a random variable. In a​ population, μY=103 and σ2Y=56. Use the central limit...

Let Y be a random variable. In a​ population,

μY=103

and

σ2Y=56.

Use the central limit theorem to answer the following questions.

​ (Note​:

any intermediate results should be rounded to four decimal​ places)

In a random sample of size n​ =

152​,

find

PrY <104.

PrY <104

​= ???

In a random sample of size n​ =

106​,

find

Pr106< Y <108.

Pr106< Y <108

​= ???

In a random sample of size n​ =

119​,

find

PrY >106.

PrY >106

​= ???

Homework Answers

Answer #1

Please ask your query if any in comment.

PLEASE RATE THUMBS UP ??

THANKYOU

Please don't dislike the answer, feel free to ask your query if any in comment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a population with a mean of μ=105 and a variance of σ2=36​, the central limit...
Given a population with a mean of μ=105 and a variance of σ2=36​, the central limit theorem applies when the sample size is n≥25. A random sample of size n=25 is obtained. a. What are the mean and variance of the sampling distribution for the sample​ means? b. What is the probability that x>107​? c. What is the probability that 104<x<106​? d. What is the probability that x≤105.5​?
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution...
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution with μ=77 and σ=9.2. You intend to draw a random sample of size n=30. Find the probability that a sample of size n=30n=30 is randomly selected with a mean less than 76.8. P(M < 76.8) = Enter your answers as numbers accurate to 4 decimal places. Answers obtained using exact z-scores or z-scores rounded to 3 decimal places are accepted.
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution...
Apply the Central Limit Theorem for Sample Means A population of values has a normal distribution with μ = 220 and σ = 33.8. You intend to draw a random sample of size n = 35. Find the probability that a single randomly selected value from the population is less than 224.
The Central Limit Theorem indicates that in selecting random samples from a population, the sampling distribution...
The Central Limit Theorem indicates that in selecting random samples from a population, the sampling distribution of the the sample mean x-bar can be approximated by a normal distribution as the sample size becomes large. Select one: True False
Suppose a random sample of size n was drawn from a distribution with pdf f(y,a)=(1/a )...
Suppose a random sample of size n was drawn from a distribution with pdf f(y,a)=(1/a ) exp(-y/a) where y is between y>0 and a>0. Write down the central limit theorem for the standardized sample mean in terms of a and find a formula for a 95% confidence interval ..(hint: this is the exponential distribution with mean a)
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the...
Given a population with mean μ=100 and variance σ2=81, the Central Limit Theorem applies when the sample size n≥30. A random sample of size n=30 is obtained. What are the mean, the variance, and the standard deviation of the sampling distribution for the sample mean? Describe the probability distribution of the sample mean and draw the graph of this probability distribution with its mean and standard deviation. What is the probability that x<101.5? What is the probability that x>102? What...
using r coding Let Y be the random variable defined by: Y = 1 with probability...
using r coding Let Y be the random variable defined by: Y = 1 with probability 0.10, 5 with probability 0.20 ,10 with probability 0.40, 15 with probability 0.20, 19 with probability 0.10 ) Write an R program to simulate NOBS observations of the random variable Y. For NOBS=10000, find the sample mean and sample standard deviation. Write an R program to simulate NGAME games. Using the sample results for a simulation with NGAME = 40000
(05.02 LC) The Central Limit Theorem says that when sample size n is taken from any...
(05.02 LC) The Central Limit Theorem says that when sample size n is taken from any population with mean μ and standard deviation σ when n is large, which of the following statements are true? (4 points) I. The distribution of the sample mean is exactly Normal. II. The distribution of the sample mean is approximately Normal. III. The standard deviation is equal to that of the population. IV. The distribution of the population is exactly Normal. a I and...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~...
let X, Y be random variables. Also let X|Y = y ~ Poisson(y) and Y ~ gamma(a,b) is the prior distribution for Y. a and b are also known. 1. Find the posterior distribution of Y|X=x where X=(X1, X2, ... , Xn) and x is an observed sample of size n from the distribution of X. 2. Suppose the number of people who visit a nursing home on a day is Poisson random variable and the parameter of the Poisson...
Let Y1, Y2, …, Yndenote a random sample of size n from a population whose density...
Let Y1, Y2, …, Yndenote a random sample of size n from a population whose density is given by f(y) = 5y^4/theta^5 0<y<theta 0 otherwise a) Is an unbiased estimator of θ? b) Find the MSE of Y bar c) Find a function of that is an unbiased estimator of θ.