Question

Consider a consumer who has an income equal to 100 which she uses to buy x...

Consider a consumer who has an income equal to 100 which she uses to buy x and y. Suppose px = 2 for the first five units and px = 5 for each additional unit beyond 5. Suppose that py = 5 for each of the first six units and py = 10 for each additional unit beyond 6. Draw the consumer’s budget constraint.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the budget set for a consumer with income of 100 facing the following prices. The...
Consider the budget set for a consumer with income of 100 facing the following prices. The price for the first five units of good 1 is $10 (per unit) If the consumer buys more than five units, the price is $5 for any subsequent unit purchased. If the consumer spends all of her money on good 1, how many units of good 1 can she buy? 10 12 15 20 25 Well-behaved preferences are convex monotonic reach the consumer’s bliss...
Consider a student who purchases education (x) and other goods (y). The student has preferences over...
Consider a student who purchases education (x) and other goods (y). The student has preferences over these goods given by u(x, y) = ln(x) + 3ln(y). The prices of education and other goods are, respectively, px = 10 and py = 5, and the student’s income is I = 20. A. Graph the budget constraint, IEP, optimal bundle (x ∗ , y∗ ), and the indifference curve passing through the optimal consumption bundle. Label all curves, axes, slopes, and intercepts....
(a) A consumer has a budget constraint which takes the usual form  m ≥ pxx + pyy,  ...
(a) A consumer has a budget constraint which takes the usual form  m ≥ pxx + pyy,   (where  m is income and  px, py   are the prices of x and y  respectively), and is observed to choose (x, y) = (3, 5) when (px, py) = (1, 2)   and (x, y) = (5, 3) when (px, py) = (2, 1). Is the consumer’s behaviour consistent with the (weak) axiom of revealed preference? (b) Suppose an individual has no income, but is endowed with 10 units...
(a) A consumer has a budget constraint which takes the usual form m ≥ pxx +...
(a) A consumer has a budget constraint which takes the usual form m ≥ pxx + pyy, (where m is income and px, py are the prices of x and y respectively), and is observed to choose (x, y) = (3, 5) when (px, py) = (1, 2) and (x, y) = (5, 3) when (px, py) = (2, 1). Is the consumer’s behaviour consistent with the (weak) axiom of revealed preference? (b) Suppose an individual has no income, but...
Consider a consumer with an income equal to $ 100, with a utility function given by...
Consider a consumer with an income equal to $ 100, with a utility function given by U (x, y) = xy whose prices are px = 2 and py = 2. In the basket chosen by the consumer, the quantity of good x is exactly equal to the quantity chosen of good y, resulting in a degree of satisfaction of U (x, y) = 900. Is this statement correct? Justify your answer
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*,...
Suppose a consumer’s Utility Function U(x,y) = X1/2Y1/2. The consumer wants to choose the bundle (x*, y*) that would maximize utility. Suppose Px = $5 and Py = $10 and the consumer has $500 to spend. Write the consumer’s budget constraint. Use the budget constraint to write Y in terms of X. Substitute Y from above into the utility function U(x,y) = X1/2Y1/2. To solve for the utility maximizing, taking the derivative of U from (b) with respect to X....
4. Construct the relevant constraint for Bryce who spends his entire income on X and Y...
4. Construct the relevant constraint for Bryce who spends his entire income on X and Y if Income(I) = $120 Px = $5/unit for X < 10 ; Px = $3/unit for X>10 (ALL units) Py = $8/unit b. If Bryce buys 8 units of X, do his preferences violate any of the assumptions of consumer choice theory? c. How would the constraint be affected if the discount applies to additional units only?
Consider a consumer with the utility function U(x, y) =2 min(3x, 5y), that is, the two...
Consider a consumer with the utility function U(x, y) =2 min(3x, 5y), that is, the two goods are perfect complements in the ratio 3:5. The prices of the two goods are Px = $5 and Py = $10, and the consumer’s income is $330. At the optimal basket, the consumer buys _____ units of y. The utility she gets at the optimal basket is _____ At the basket (20, 15), the MRSx,y = _____.
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive the consumer’s marginal rate of substitution (b) Calculate the derivative of the MRS with respect to X. (c) Is the utility function homogenous in X? (d) Re-write the regular budget constraint as a function of PX , X, PY , &I. In other words, solve the equation for Y . (e) State the optimality condition that relates the marginal rate of substi- tution to...
Suppose there are two goods, good X and good Y . Both goods are available in...
Suppose there are two goods, good X and good Y . Both goods are available in arbitrary non-negative quantities; that is, the consumption set is R2++. A typical consumption bundle is denoted (x,y), where x is the quantity of good X and y is the quantity of good Y . A consumer, Alia, faces two constraints. First, she has a limited amount of wealth, w > 0, to spend on the goods X and Y , and both of these...