Question

We have a utility function U = aln(x) + (1 - a)ln(Y) subject to the budget...

We have a utility function U = aln(x) + (1 - a)ln(Y) subject to the budget constraint: Px'X + Py'Y = I

Please use the Lagrange Multiplier method to find the demand function for goods X and Y given the above information about I (income), Px (price of goods X), Py (prices of good Y)

Please interpret the meaning of the Multiplier.

Homework Answers

Answer #1

Lagrange Multiplier is a strategy for finding the local maxima and minima of a function subject to equality constraint. The basic idea is to convert a constrained problem into a form such that the derivative test of an unconstrained problem can still be applied.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(Hajikhameneh & Rietz) Answer the following questions for a consumer with utility function U(x, y) =...
(Hajikhameneh & Rietz) Answer the following questions for a consumer with utility function U(x, y) = x2 y2 and a budget constraint of g(x, y) = 2x + 4y = 40. You must show all of your work for full credit. a. What is the marginal utility of x? of y? b. In one to two sentences, define the economic meaning of the term “marginal utility.” c. What is the marginal rate of substitution for the given utility function? d....
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive the consumer’s marginal rate of substitution (b) Calculate the derivative of the MRS with respect to X. (c) Is the utility function homogenous in X? (d) Re-write the regular budget constraint as a function of PX , X, PY , &I. In other words, solve the equation for Y . (e) State the optimality condition that relates the marginal rate of substi- tution to...
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy....
1. Suppose utility for a consumer over food(x) and clothing(y) is represented by u(x,y) = 915xy. Find the optimal values of x and y as a function of the prices px and py with an income level m. px and py are the prices of good x and y respectively. 2. Consider a utility function that represents preferences: u(x,y) = min{80x,40y} Find the optimal values of x and y as a function of the prices px and py with an...
Assume that we have following utility maximization problem with quasilinear utility function: U=2√ x + Y...
Assume that we have following utility maximization problem with quasilinear utility function: U=2√ x + Y s.t. pxX+pyY=I (a)derive Marshallian demand and show if x is a normal good, or inferior good, or neither (b)assume that px=0.5, py=1, and I =10. Then the price x declined to 0.2. Use Hicksian demand function and expenditure function to calculate compensating variation. (c)use hicksian demand function and expenditure function to calculate equivalent variation (e) briefly explain why compensating variation and equivalent variation are...
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s...
A consumer has utility function U(x, y) = x + 4y1/2 . What is the consumer’s demand function for good x as a function of prices px and py, and of income m, assuming a corner solution? Group of answer choices a.x = (m – 3px)/px b.x = m/px – 4px/py c.x = m/px d.x = 0
An agent has preferences for goods X and Y represented by the utility function U(X,Y) =...
An agent has preferences for goods X and Y represented by the utility function U(X,Y) = X +3Y the price of good X is Px= 20, the price of good Y is Py= 40, and her income isI = 400 Choose the quantities of X and Y which, for the given prices and income, maximize her utility.
Maximise the utility u=5*ln(x-1)+ln(y-1) by choosing the consumption bundle (x,y) subject to the budget constraint x+y=10....
Maximise the utility u=5*ln(x-1)+ln(y-1) by choosing the consumption bundle (x,y) subject to the budget constraint x+y=10. Here, ln denotes the natural logarithm, * multiplication, / division, + addition, - subtraction. Ignore the nonnegativity constraints x,y>=0. Write the quantity x in the utility-maximising consumption bundle (x,y). Write the answer as a number in decimal notation with at least two digits after the decimal point. No fractions, spaces or other symbols.
Suppose a consumer has the utility function u(x, y) = x + y. a) In a...
Suppose a consumer has the utility function u(x, y) = x + y. a) In a well-labeled diagram, illustrate the indifference curve which yields a utility level of 1. (b) If the consumer has income M and faces the prices px and py for x and y, respectively, derive the demand functions for the two goods. (c) What types of preferences are associated with such a utility function?
Sam's is interested in two goods, X and Y. His indirect utility function is U* =...
Sam's is interested in two goods, X and Y. His indirect utility function is U* = M px-.6 py-4.    ( same as U* = M /(px.6 py0.4 ) ) where M is Sam's income, and px   and py denote respectively the price of good X and the price of good Y.   Sam's market demand functions are X*=0.6M/px and Y* = 0.4M/py . Find the absolute value of the change in Sam's consumers surplus if the price of good X...
Given the following utility function and budget contraints: U(X,Y) = XY I = Px (X) +...
Given the following utility function and budget contraints: U(X,Y) = XY I = Px (X) + Py(Y) and given that: Py = 10 , Px=12 and I = 360 Fill in the blanks in the following table (round to two decimal places): Part 1:     What is the Value of Qx? Part 2:     What is the Value of Qy? Part 3:     What is the Optimal level of utility?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT