Question

Suppose that we will randomly select a sample of n = 117 elements from a population...

Suppose that we will randomly select a sample of n = 117 elements from a population and that we will compute the sample proportion

  of these elements that fall into a category of interest. If the true population proportion p equals .7:

(a) Describe the shape of the sampling distribution of

. Why can we validly describe the shape?

(b) Find the mean and the standard deviation of the sampling distribution of

. (Round the answers to 2 decimal places.)

Homework Answers

Answer #1

n=117 and p=0.7 which is binomial distribution

We will do normal approximation as n is large

X ~ N(E(X),(Var(X))

X ~ N(np,np(1-p)) ( mean and variance of binomial distribution)

X/n ~ N(E(X/n) , Var(X/n)) ~ N(1/n E(X) , 1/n2  Var(X))

a. We know that sampling distribution of p is normally distributed if np>15

In our question np = 117*0.7 = 81.9 , So we can say that it is normally distributed

And we know that normal distribution have bell shaped curve , So sampling distribution will have bell shaped curve.

b. X/n~ N(1/n E(X),1/n2  Var(X))

X/n ~ N(p , p(1-p)/n)

Mean of Sample distribution is p and Standard deviation is (p(1-p)/n)^0.5

mean = 0.7

variance = 0.00179 or standard deviation = 0.00179^0.5 = 0.042

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that we will randomly select a sample of n = 88 elements from a population...
Suppose that we will randomly select a sample of n = 88 elements from a population and that we will compute the sample proportion of these elements that fall into a category of interest. If the true population proportion p equals .9: (a) Describe the shape of the sampling distribution of . Why can we validly describe the shape? (b) Find the mean and the standard deviation of the sampling distribution of . (Round the answers to 2 decimal places.)
Suppose that we will randomly select a sample of 79 measurements from a population having a...
Suppose that we will randomly select a sample of 79 measurements from a population having a mean equal to 21 and a standard deviation equal to 8. (a) Describe the shape of the sampling distribution of the sample mean . Do we need to make any assumptions about the shape of the population? Why or why not? Normally distributed ; yes , because the sample size is large . (b) Find the mean and the standard deviation of the sampling...
suppose a random sample of n measurements is selected from a binomial population with probability of...
suppose a random sample of n measurements is selected from a binomial population with probability of success p=0.31. given n=300. describe the shape, and find the mean and the standard deviation of the sampling distribution of the sample proportion
Suppose a random sample of n measurements is selected from a binomial population with probability of...
Suppose a random sample of n measurements is selected from a binomial population with probability of success p = .38. Given n = 300, describe the shape, and find the mean and the standard deviation of the sampling distribution of the sample proportion,  .
1. Suppose a random sample of 100 elements is selected from a non-normally distributed population with...
1. Suppose a random sample of 100 elements is selected from a non-normally distributed population with a mean of µ = 30 and a standard deviation of σ = 8. a. What is the expected value of ?̅? b. What is the standard error of the mean ??̅? c. What is the sampling distribution of ?̅? Describe its properties. d. If we select a random sample of size n = 100, what is the probability that ?̅will fall within ±...
Suppose a simple random sample of size n=200 is obtained from a population whose size is...
Suppose a simple random sample of size n=200 is obtained from a population whose size is N = 20000 and whose population proportion with a specified characteristic is p equals 0.8. ​(a) Describe the sampling distribution of Determine the mean of the sampling distribution Determine the standard deviation of the sampling distribution ​(b) What is the probability of obtaining x= 168or more individuals with the​ characteristic? That​ is, what is P(p greater than or equal to 0.84? ​(c) What is...
Suppose a simple random sample of size nequals=75 is obtained from a population whose size is...
Suppose a simple random sample of size nequals=75 is obtained from a population whose size is Upper N equals N=25,000 and whose population proportion with a specified characteristic is p equals 0.6 1. Describe the sampling distribution of  p hat 2. Determine the mean of the sampling distribution 3. Determine the standard deviation of the sampling distribution 4. What is the probability of obtaining xequals=48 or more individuals with the​ characteristic? That​ is, what is ​P(ModifyingAbove p with caretpgreater than or...
A random sample of size n = 50 is selected from a binomial distribution with population...
A random sample of size n = 50 is selected from a binomial distribution with population proportion p = 0.8. Describe the approximate shape of the sampling distribution of p̂. Calculate the mean and standard deviation (or standard error) of the sampling distribution of p̂. (Round your standard deviation to four decimal places.) mean = standard deviation = Find the probability that the sample proportion p̂ is less than 0.9. (Round your answer to four decimal places.)
Suppose a random sample of n=36 measurements is selected from a population with mean u=256 and...
Suppose a random sample of n=36 measurements is selected from a population with mean u=256 and variance o^2=144. a. Describe the sampling distribution of the sample mean x bar. (Hint: describe the shape, calculate the mean and the standard deviation of the sampling distribution of x bar. b. What is the probability that the sample mean is greater than 261?
31) – (33): A random sample of size n = 40 is selected from a population...
31) – (33): A random sample of size n = 40 is selected from a population that has a proportion of successes p = 0.8. 31) Determine the mean proportion of the sampling distribution of the sample proportion. 32) Determine the standard deviation of the sampling distribution of the sample proportion, to 3 decimal places. 33) True or False? The sampling distribution of the sample proportion is approximately normal.