Question

1. The Central Limit Theorem A. States that the OLS estimator is BLUE B. states that...

1. The Central Limit Theorem

  • A. States that the OLS estimator is BLUE
  • B. states that the mean of the sampling distribution of the mean is equal to the population mean
  • C. none of these
  • D. states that the mean of the sampling distribution of the mean is equal to the population standard deviation divided by the square root of the sample size

2. Consider the regression equation Ci= β0+β1 Yi+ ui where C is consumption and Y is disposable income. The slope parameter β1 indicates

  • A. Change in Y divided by change in C
  • B. C/Y
  • C. Y/C
  • D. Change in C divided by change in Y

Homework Answers

Answer #1

1. Ans: States that the mean of the sampling distribution of the mean is equal to the population mean.

Explanation:

The central limit theorem states that the sampling distribution of the mean approaches a normal distribution. It states if the sample size is large from a population with a finite level of variance, the mean of the sampling distribution of the mean is equal to the population mean.

Thus, option [B] is correct answer.

2. Ans: Change in C divided by change in Y

Explanation:

The slope parameter β1 indicates the Marginal Propensity to Consume (MPC). MPC is defined as Change in C divided by change in Y.

Thus, option [D] is correct answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Which one of the following statements is true? A. The Central Limit Theorem states that the...
Which one of the following statements is true? A. The Central Limit Theorem states that the sampling distribution of the sample mean, y , is approximately Normal for large n only if the distribution of the population is normal. B. The Central Limit Theorem states that the sampling distribution of the sample mean, y , is approximately Normal for small n only if the distribution of the population is normal. C. The Central Limit Theorem states that the sampling distribution...
1) Which of the following does not generally decrease the variance of the OLS estimator of...
1) Which of the following does not generally decrease the variance of the OLS estimator of slope βˆ1? a) Increasing the variance of the error term, b) Increasing the sample size, c) None of the above, d) Increasing the variance of the independent variable 2) If the independent variable is a binary variable then which of the following is true? a)β0 is a population mean for the group with a value of 1 for the independent variable, b) β1 is...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and...
1. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this regression using OLS and get the following results: b0=-3.13437; SE(b0)=0.959254; b1=1.46693; SE(b1)=21.0213; R-squared=0.130357; and SER=8.769363. Note that b0 and b1 the OLS estimate of b0 and b1, respectively. The total number of observations is 2950.According to these results the relationship between C and Y is: A. no relationship B. impossible to tell C. positive D. negative 2. Consider the model Ci= β0+β1 Yi+ ui. Suppose you run this...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central...
Which of the following statements is not consistent with the Central Limit Theorem? 1. The Central Limit Theorem applies to non-normal population distributions. 2. The standard deviation of the sampling distribution will be equal to the population standard deviation. 3. The sampling distribution will be approximately normal when the sample size is sufficiently large. 4. The mean of the sampling distribution will be equal to the population mean.
The Central Limit Theorem allows us to make predictions about where a sample mean will fall...
The Central Limit Theorem allows us to make predictions about where a sample mean will fall in a distribution of sample means. One way it does this is by explaining (using a formula) how the shape of the distribution will change depending on the sample size. What part of the Central Limit Theorem tells us about the shape of the distribution? The part that explains that there is no standardized table you can use to find probabilities once you use...
If the Central Limit Theorem applies in a given situation then: ( select all that apply)...
If the Central Limit Theorem applies in a given situation then: ( select all that apply) Group of answer choices A. the standard deviation of all possible means is the standard deviation of the population divided by the square root of the size of the population B. the variance of all possible means is the variance of the population divided by the size of the population C. the mean of all possible means is the mean of the population D....
Which of the following is NOT a conclusion of the Central Limit​ Theorem? Choose the correct...
Which of the following is NOT a conclusion of the Central Limit​ Theorem? Choose the correct answer below. A. The distribution of the sample means x overbar ​will, as the sample size​ increases, approach a normal distribution. B. The mean of all sample means is the population mean mu. C. The distribution of the sample data will approach a normal distribution as the sample size increases. D. The standard deviation of all sample means is the population standard deviation divided...
If the errors in the CLR model are not normally distributed, although the OLS estimator is...
If the errors in the CLR model are not normally distributed, although the OLS estimator is no longer BLUE, it is still unbiased. In the CLR model, βOLS is biased if explanatory variables are endogenous. The value of R2 in a multiple regression cannot be high if all the estimates of the regression coefficients are shown to be insignificantly different from zero based on individual t tests. Suppose the CNLR applies to a simple linear regression y = β1 +...
The central limit theorem states that: Populations with more than 30 observations are approximately normally distributed....
The central limit theorem states that: Populations with more than 30 observations are approximately normally distributed. As the sample size increase, a sampling distribution will look more and more like the population. As long as the sample size collected is at least 30, the variable of interest will always be approximately normally distributed. A skewed-left population can never be a sampling distribution that is approximately normally distributed. For sufficiently large random samples, the sampling distribution of the sample mean is...
The Central Limit Theorem indicates that in selecting random samples from a population, the sampling distribution...
The Central Limit Theorem indicates that in selecting random samples from a population, the sampling distribution of the the sample mean x-bar can be approximated by a normal distribution as the sample size becomes large. Select one: True False