Question

Suppose the following model of government efficiency. Utility function over consumption of private goods (C) and...

Suppose the following model of government efficiency. Utility function over consumption of private goods (C) and public goods (G) U(C,L) = C^0.5G^0.5

Exogenous Income: Y = 50 Lump-sum tax: T Budget constraint: C + T = Y PPF: C = Y – G/q Government efficiency: q = 0.8 (This measures the number of public goods that can be produced from one unit of private consumption good) We want to maximize the representative consumer’s utility and balance the government budget. Find C*, G*, T*

2) Consider the following two-period problem for the representative consumer Y1 = 50 T1 = 5 Y2 = 20 T2 = 10 r = 0.10 C1 = consumption in the first period C2 = consumption in the second period S = saving in the first period U(C1, C2) = min{C1, C2} What is the optimal saving, S*, that maximizes the representative consumer’s lifetime utility?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer’s consumption-utility function for a two-period horizon (t = 1, 2) is given by U(c1,c2)...
A consumer’s consumption-utility function for a two-period horizon (t = 1, 2) is given by U(c1,c2) = ln(c1)+ln(c2). The consumer’s income stream is y1 = $1500 and y2 = $1080, and the market rate of interest is 8%. Calculate the optimal values for c1 and c2 that maximize the consumer’s utility
Beta lives for two periods. In period 1, Beta works and earns a total income of...
Beta lives for two periods. In period 1, Beta works and earns a total income of $2, 000. If she consumes $c1 in period 1, then she deposits her savings of 2, 000 − c1 dollars in a bank account that gives her an interest rate of 10% per period. (Notice that Beta is not able to borrow in period 1, so c1 ≤ 2, 000.) In period 2, Beta leads a retired life and receives $110 in social-security income....
Suppose that the economy is characterized by the consumption function C=151+ 0.1(Y-T) with exogenous investment I...
Suppose that the economy is characterized by the consumption function C=151+ 0.1(Y-T) with exogenous investment I = 10, government purchases G = 20, and taxes T = 10. Which of the following is true? the multiplier is 0.9 the equilibrium consumption/output ratio is C/Y = 0.9 the autonomous spending is 170. equilibrium output is Y = 200 the government budget is balanced
Beta lives for two periods. In period 1, Beta works and earns a total income of...
Beta lives for two periods. In period 1, Beta works and earns a total income of $2, 000. If she consumes $c1 in period 1, then she deposits her savings of 2, 000 − c1 dollars in a bank account that gives her an interest rate of 10% per period. (Notice that Beta is not able to borrow in period 1, so c1 ≤ 2, 000.) In period 2, Beta leads a retired life and receives $110 in social-security income....
Consider the following consumption decision problem. A consumer lives for two periods and receives income of...
Consider the following consumption decision problem. A consumer lives for two periods and receives income of y in each period. She chooses to consume c1 units of a good in period 1 and c2 units of the good in period 2. The price of the good is one. The consumer can borrow or invest at rate r. The consumer’s utility function is: U = ln(c1) + δ ln(c2), where δ > 0. a. Derive the optimal consumption in each period?...
Which utility function for the representative consumer best describes a​ one-period model in which government spending...
Which utility function for the representative consumer best describes a​ one-period model in which government spending is not​ wasteful? A. U(C,L)=ln(C+0.2•G) +ln(L) B. There is no such utility function. In the​ one-period model government spending is always wasteful. C. U(C,L)=ln(C) + 0.5•L
Assume the representative consumer lives in two periods and his preferences can be described by the...
Assume the representative consumer lives in two periods and his preferences can be described by the utility function U(c,c′)=c1/3 +β(c′)1/3, where c is the current consumption, c′ is next period consumption, and β = 0.95. Let’s assume that the consumer can borrow or lend at the interest rate r = 10%. The consumer receives an income y = 100 in the current period and y′ = 110 in the next period. The government wants to spend G = 30 in...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2),...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2), where ct denotes the stream of consumption in period t and l, hours of leisure. He can choose to work only when he is young. If he works an hour, he can earn 10 dollars (he can work up to 100 hours). He can also use savings to smooth consumption over time, and if he saves, he will earn an interest rate of 10%...
Suppose the representative consumer’s preferences are given by the utility function, U(C, l) = aln C...
Suppose the representative consumer’s preferences are given by the utility function, U(C, l) = aln C + (1- a) ln l Where C is consumption and l is leisure, with a utility function that is increasing both the arguments and strictly quiescence, and twice differentiable. Question: The total quantity of time available to the consumer is h. The consumer earns w real wage from working in the market, receives endowment π from his/her parents, and pays the T lump-sum tax...
A representative consumer living in a Country A values consuming goods (C) and enjoys leisure (l)....
A representative consumer living in a Country A values consuming goods (C) and enjoys leisure (l). The consumer has h = 1 units of time to divide between working and enjoying leisure. For each hour worked, he receives w = 1.5 units of the consumption good. The consumer also owns shares in a factory which gives him an additional π = 0.55 units of income. The government in this economy taxes the consumer and uses the proceeds to buy consumption...