Question

2. A consumer has the utility function U ( X1, X2 ) = X1 + X2...

2. A consumer has the utility function U ( X1, X2 ) = X1 + X2 + X1X2 and the budget constraint P1X1 + P2X2 = M ,

where M is income, and P1 and P2 are the prices of the two goods. .

a. Find the consumer’s marginal rate of substitution (MRS) between the two goods.

b. Use the condition (MRS = price ratio) and the budget constraint to find the demand functions for the two goods.

c. Are the goods complements or substitutes for each other? How do you know?

Homework Answers

Answer #1

(a)

MU1 = U/X1 = 1 + X2

MU2 = U/X2 = 1 + X1

MRS = MU1/MU2 = (1 + X2) / (1 + X1)

(b)

Utility is maximized when MRS = P1/P2

(1 + X2) / (1 + X1) = P1/P2

P2 + P2.X2 = P1 + P1.X1

P2.X2 = P1 + P1.X1 - P2

Substituting in budget line,

M = P1.X1 + P2.X2

M = P1.X1 + P1 + P1.X1 - P2

M = 2P1.X1 + P1 - P2

2P1.X1 = M - P1 + P2

X1 = (M - P1 + P2) / 2P1

Again,

P1.X1 = P2.X2 - P1 + P2

Substituting in budget line,

M = P2.X2 - P1 + P2 + P2.X2

M = 2P2.X2 - P1 + P2

2P2.X2 = M + P1 - P2

X2 = (M + P1 - P2) / 2P2

(c)

From demand function of X1, as P2 increases (decreases), X1 increases (decreases). From demand function of X2, as P1 increases (decreases), X2 increases (decreases). So X1 and X2 are substitutes.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a utility function for perfect complements: U(x1,x2) = min{x1,βx2}, where β is a positive num-...
Given a utility function for perfect complements: U(x1,x2) = min{x1,βx2}, where β is a positive num- ber, and a budget constraint: p1x1 + p2x2 = Y , where p1 and p2 are prices of good 1 and good 2 respectively, Y is the budget for the complements. Find the demand functions for good 1 and good 2.
Suppose an individual consumers two goods, with utility function U (x1; x2) = x1 + 6(x1x2)^1/2...
Suppose an individual consumers two goods, with utility function U (x1; x2) = x1 + 6(x1x2)^1/2 + 9x2. Formulate the utility maximization problem when she faces a budget line p1x1 + p2x2 = I. Find the demand functions for goods 1 and 2. (b) Now consider an individual consumers with utility function U (x1; x2) = x1^1/2 + 3x2^1/2. Formulate the utility maximization problem when she faces a budget line p1x1 + p2x2 = I. Find the demand functions for...
Consider utility function u(x1,x2) =1/4x12 +1/9x22. Suppose the prices of good 1 and good 2 are...
Consider utility function u(x1,x2) =1/4x12 +1/9x22. Suppose the prices of good 1 and good 2 are p1 andp2, and income is m. Do bundles (2, 9) and (4, radical54) lie on the same indifference curve? Evaluate the marginal rate of substitution at (x1,x2) = (8, 9). Does this utility function represent convexpreferences? Would bundle (x1,x2) satisfying (1) MU1/MU2 =p1/p2 and (2) p1x1 + p2x2 =m be an optimal choice? (hint: what does an indifference curve look like?)
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1,p2,m) and x2(p1, p2,m) by using the method of Lagrange.
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate...
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1, p2, m) and x2(p1,p2, m) by using the method of Lagrange.
A consumer’s preferences over two goods (x1,x2) are represented by the utility function ux1,x2=5x1+2x2. The income...
A consumer’s preferences over two goods (x1,x2) are represented by the utility function ux1,x2=5x1+2x2. The income he allocates for the consumption of these two goods is m. The prices of the two goods are p1 and p2, respectively. Determine the monotonicity and convexity of these preferences and briefly define what they mean. Interpret the marginal rate of substitution (MRS(x1,x2)) between the two goods for this consumer.   For any p1, p2, and m, calculate the Marshallian demand functions of x1 and...
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1...
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1 and x2 (as functions of p1, p2, and m). Thank you!
1. (3 marks) Suppose a price-taking consumer chooses goods 1 and 2 to maximize her utility...
1. Suppose a price-taking consumer chooses goods 1 and 2 to maximize her utility given her wealth. Her budget constraint could be written as p1x1 + p2x2 = w, where (p1,p2) are the prices of the goods, (x1,x2) denote quantities of goods 1 and 2 she chooses to consume, and w is her wealth. Assume her preferences are such that demand functions exist for this consumer: xi(p1,p2,w),i = 1,2. Prove these demand functions must be homogeneous of degree zero.
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption of good 1 and x2 is her consumption of good 2. The price of good 1 is p1, the price of good 2 is p2, and her income is M. Setting the marginal rate of substitution equal to the price ratio yields this equation: p1/p2 = (1+x2)/(A+x1) where A is a number. What is A? Suppose p1 = 11, p2 = 3 and M...
A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization...
A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization problem. Construct the Marshallian demand function D(p,I) and show that the indirect utility function is V (p, I) = I / (p1+ 2 * sqrt (p1*p2) + p2) (b) Find the corresponding expenditure function e(p; u). HINT: Holding p fixed, V and e are inverses. So you can find the expenditure function by working with the answer to part (a). (c) Construct the Hicksian...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT