Question

Bilbo can consume two goods, good 1 and good 2 where X1 and X2 denote the...

Bilbo can consume two goods, good 1 and good 2 where X1 and X2 denote the quantity consumed of each good. These goods sell at prices P1 and P2, respectively. Bilbo’s preferences are represented by the following utility function: U(X1, X2) = 3x1X2. Bilbo has an income of m.

a) Derive Bilbo’s Marshallian demand functions for the two goods.

b) Given your answer in a), are the two goods normal goods? Explain why and show this mathematically.

c) Calculate Bilbo’s price elasticity for good 1. Explain also in words what the measure means.

d) Would the utility functionu(x1, x2) = −2x1x2 still represent Bilbo’s preferences? Motivate your answer!

Homework Answers

Answer #1

Concept of Utility Maximisation (by virtue of Lagrange's equation) has been applied. Marshallian demand for goods are the demands that are expressed in terms of prices of the goods and income.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer’s preferences over two goods (x1,x2) are represented by the utility function ux1,x2=5x1+2x2. The income...
A consumer’s preferences over two goods (x1,x2) are represented by the utility function ux1,x2=5x1+2x2. The income he allocates for the consumption of these two goods is m. The prices of the two goods are p1 and p2, respectively. Determine the monotonicity and convexity of these preferences and briefly define what they mean. Interpret the marginal rate of substitution (MRS(x1,x2)) between the two goods for this consumer.   For any p1, p2, and m, calculate the Marshallian demand functions of x1 and...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A consumer has the utility function U(x1, x2) = min{2x1, 5x2}, where “min” is the minimum function, and x1 and x2 are the amounts she consumes of Good 1 and Good 2. Her income is M > 0. (a) What condition must be true of x1 and x2, in any utility-maximising bundle the consumer chooses? Your answer should be an equation involving (at least) these...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A consumer has the utility function U(x1, x2) = min{2x1, 5x2}, where “min” is the minimum function, and x1 and x2 are the amounts she consumes of Good 1 and Good 2. Her income is M > 0. (a) What condition must be true of x1 and x2, in any utility-maximising bundle the consumer chooses? Your answer should be an equation involving (at least) these...
11. a. Suppose David spends his income M on goods x1 and x2, which are priced...
11. a. Suppose David spends his income M on goods x1 and x2, which are priced p1 and p2, respectively. David’s preference is given by the utility function ?(?1, ?2) = √?1 + √?2. (i) Derive the Marshallian (ordinary) demand functions for x1 and x2. (ii) Show that the sum of all income and (own and cross) price elasticity of demand b.for x1 is equal to zero. b. For Jimmy both current and future consumption are normal goods. He has...
Suppose you consume two goods, whose prices are given by p1 and p2, and your income...
Suppose you consume two goods, whose prices are given by p1 and p2, and your income is m. Solve for your demand functions for the two goods, if (a) your utility function is given by U(x1, x2) = ax1 + bx2 (b) your utility function is given by U(x1, x2) = max{ax1, bx2}
1. (3 marks) Suppose a price-taking consumer chooses goods 1 and 2 to maximize her utility...
1. Suppose a price-taking consumer chooses goods 1 and 2 to maximize her utility given her wealth. Her budget constraint could be written as p1x1 + p2x2 = w, where (p1,p2) are the prices of the goods, (x1,x2) denote quantities of goods 1 and 2 she chooses to consume, and w is her wealth. Assume her preferences are such that demand functions exist for this consumer: xi(p1,p2,w),i = 1,2. Prove these demand functions must be homogeneous of degree zero.
Suppose that a consumer has preferences over bundles of non-negative amounts of each two goods, x1...
Suppose that a consumer has preferences over bundles of non-negative amounts of each two goods, x1 and x2, that can be represented by a quasi-linear utility function of the form U(x1,x2)=x1 +√x2. The consumer is a price taker who faces a price per unit of good one that is equal to $p1 and a price per unit of good two that is equal to $p2. An- swer each of the following questions. To keep things relatively simple, focus only on...
Al Einstein has a utility function that we can describe by u(x1, x2) = x 2...
Al Einstein has a utility function that we can describe by u(x1, x2) = x 2 1 + 2x1x2 + x 2 2 . Al’s wife, El Einstein, has a utility function v(x1, x2) = x2 + x1. (a) Calculate Al’s marginal rate of substitution between x1 and x2. (b) What is El’s marginal rate of substitution between x1 and x2? (c) Do Al’s and El’s utility functions u(x1, x2) and v(x1, x2) represent the same preferences? (d) Is El’s...
Find the optimal bundle (x1, x2) (two numbers). Does Jeremy consume positive amounts of both goods?...
Find the optimal bundle (x1, x2) (two numbers). Does Jeremy consume positive amounts of both goods? (e) Find the optimal bundle given p1 = 2, p2 = 4 and m = 40 assuming U(x1, x2) = 2x1 + 3x2. Does Jeremy consume positive amounts of both goods? Is the optimal bundle at a point of tangency?
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                         &nbs
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                                                                                                                                           a. Show that the above utility function corresponds to (hint:use the MRS between good 1 and good 2. The ->refers to the concept of limits.                  1. The perfect substitute utility function at p=1 2. The Cobb-Douglas utility function as p -->0 3. The Leontiff (of min(x1,x2) as p--> -infinity b. For infinity<p<1, a given level of income I and prices p1 and p2. 1. Find the marshallian...