Question

Use the following information to answer 31-35 Consider Jen, a consumer with preferences (U,H,F)=0.3LogF+0.7log H where...

Use the following information to answer 31-35

Consider Jen, a consumer with preferences (U,H,F)=0.3LogF+0.7log H where H is the quantity of housing and F is the quantity of food (per month). Suppose Jen has a stipend of $1000/month which she uses to purchase food at a price of $3/unit and housing at a price of $7/unit.

Jen's utility-maximizing bundle of goods should be.

A.

(240F, 40H)

B.

(170F, 70H)

C.

(100F, 100H)

D.

(140F, 60H)

Homework Answers

Answer #1

Ans.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Use the following information to answer 31-35 Consider Jen, a consumer with preferences (U,H,F) log0.3F+0.7logH, where...
Use the following information to answer 31-35 Consider Jen, a consumer with preferences (U,H,F) log0.3F+0.7logH, where H is the quantity of housing and F is the quantity of food (per month). Suppose that her employer simply gave Jen the dollar cost you found in Q32 as a lump sum (instead of subsidized food). Jen’s new optimal consumption bundle should be A. (210F, 90H) B. (160F, 85H) C. (150F, 100H) D. (115F, 115H)
Let U (F, C) = F C represent the consumer's utility function, where F represents food...
Let U (F, C) = F C represent the consumer's utility function, where F represents food and C represents clothing. Suppose the consumer has income (M) of $1,200 , the price of food (PF) is $10 per unit, and the price of clothing (PC) is $20 per unit. Based on this information, her optimal (or utility maximizing) consumption bundle is:
Julie has preferences for food, f, and clothing, c, described by a Cobb-Douglas utility function u(f,...
Julie has preferences for food, f, and clothing, c, described by a Cobb-Douglas utility function u(f, c) = f · c. Her marginal utilities are MUf = c and MUc = f. Suppose that food costs $1 a unit and that clothing costs $2 a unit. Julie has $12 to spend on food and clothing. a. Sketch Julie’s indifference curves corresponding to utility levels U¯ = 12, U¯ = 18, and U¯ = 24. Using the graph (no algebra yet!),...
[Utility Maximization] Mary spends her income on housing (H) and food (F). Her utility function is...
[Utility Maximization] Mary spends her income on housing (H) and food (F). Her utility function is given by: U(H, F) = 3HF − H + F Suppose the price of food is $1 per unit and the price of housing is $2 per unit. Assume her income is $9. a) Write down Mary’s budget constraint and find the expression for her marginal rate of substitution (MRS(HF)). b) Assume the optimal choice of (H*,F*) is not a corner solution. Write the...
. A consumer faces the following utility function: U=xM, with M representing dollars spent on all...
. A consumer faces the following utility function: U=xM, with M representing dollars spent on all goods   other than good x (therefore PM º 1). Assume that Px =$1 and I = $100.    a. Find the optimal consumption bundle and the level of utility at that bundle. Show the result from this part on a graph. Place x on the horizontal axis and M on the vertical axis.    b. Suppose the government provides the consumer with $20 worth...
10. A consumer faces the following utility function: U=xM, with M representing dollars spent on all...
10. A consumer faces the following utility function: U=xM, with M representing dollars spent on all goods other than good x (therefore PM ? 1). Assume that Px =$1 and I = $100. a. Find the optimal consumption bundle and the level of utility at that bundle. Show the result from this part on a graph. Place x on the horizontal axis and M on the vertical axis. b. Suppose the government provides the consumer with $20 worth of X-stamps....
1. Consider the following information: Jessica’s utility function is U(x, y) = xy. Maria’s utility function...
1. Consider the following information: Jessica’s utility function is U(x, y) = xy. Maria’s utility function is U(x, y) = 1,000xy. Nancy’s utility function is U(x,y) = -xy. Chawki’s utility function is U(x,y) = xy - 10,000. Marwan’s utility function is U(x,y)= x(y + 1). Which of these persons have the same preferences as Jessica? 2. Suppose the market demand for a product is given by Qd = 1000 −10P      and the market supply is given by Qs= −50...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive...
Consider a consumer with the following utility function: U(X, Y ) = X1/2Y 1/2 (a) Derive the consumer’s marginal rate of substitution (b) Calculate the derivative of the MRS with respect to X. (c) Is the utility function homogenous in X? (d) Re-write the regular budget constraint as a function of PX , X, PY , &I. In other words, solve the equation for Y . (e) State the optimality condition that relates the marginal rate of substi- tution to...
Olivia likes to eat both apples and bananas. At the grocery store, each apple costs $0.20...
Olivia likes to eat both apples and bananas. At the grocery store, each apple costs $0.20 and each banana cost $0.25. Olivia’s utility function for apples and bananas is given by U(A, B) = 6 (AB)1/2 . If Olivia has $4 to spend on apples and bananas, how many of each should she buy to maximize her satisfaction? Use the tangency condition to find the optimal amount of A to relative to B . MUA/PA = MUB/PB Now plug this...
Total utility can be objectively measured in numbers that indicate usefulness or benefit to the consumer....
Total utility can be objectively measured in numbers that indicate usefulness or benefit to the consumer. ____ 2. Consumers should purchase quantities of a good to the point where MU > P. ____ 3. Voluntary exchange requires that there must be mutual gain. ____ 4. Points along a budget line represent the maximum combinations of two commodities that a consumer can afford. ____ 5. The budget line represents a consumer's preferences for a commodity. ____ 6. A change in consumer...