Question

? = 10 − 1/4Q 4. (Collusion) Now suppose firms face the same market demand as...

? = 10 − 1/4Q

4. (Collusion) Now suppose firms face the same market demand as in Problem 3. But now there are three firms (firm 1, firm 2, and firm 3) where Q = q1 + q2 + q3. All of them bear the same production marginal cost of c1 = c2 = c3 = 4 per one gallon of water. Lastly, the game among these firms is repeated indefinitely in each period t = 1, 2, 3, ... . Let δ ∈ (0, 1) denote the firms’ common time discount factor. (a) Find the static (joint) monopolist’s quantity, price and profit when they collude. (b) Solve the static Cournot game. That is, find q1 * , q2 * , q3 * , p * , π1 * , π2 * , π3 * . (c) Now find the static profit of firm 1 when he solely deviates from collusion.(d) Calculate the lifetime value of firm 1 when all of the firms maintain collusion forever (Vcol). Also find the lifetime value of firm 1 when he solely betrays at t = 1 and is detected by others at t = 2 (Vdev). (e) Compute the minimum threshold value of δ that would make collusion sustainable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. (Static Cournot Model) In Long Island there are two suppliers of distilled water, labeled firm...
1. (Static Cournot Model) In Long Island there are two suppliers of distilled water, labeled firm 1 and firm 2. Distilled water is considered to be a homogenous good. Let p denote the price per gallon, q1 quantity sold by firm 1, and q2 the quantity sold by firm 2. Firm 1 bears the production cost of c1 = 4, and firm 2 bears c2 = 2 per one gallon of water. Long Island’s inverse demand function for distilled water...
Consider three firms that face market demand P = 101 - Q. The cost functions are...
Consider three firms that face market demand P = 101 - Q. The cost functions are C1(q1)=6(q1^2) for firm 1, C2(q2)=4(q2^2) for firm 2, and C3(q3)=4q(3^2) for firm 3. Firm 1 is the Stackelberg leader and firms 2 and 3 are the followers. What is firm 1's equilibrium output q1^*?
Consider two identical firms (no. 1 and no. 2) that face a linear market demand curve....
Consider two identical firms (no. 1 and no. 2) that face a linear market demand curve. Each firm has a marginal cost of zero and the two firms together face demand: P = 50 - 0.5Q, where Q = Q1 + Q2. a. Find the Cournot equilibrium Q and P for each firm. Calculate the results rounded to the second digit after the decimal point b. Find the equilibrium Q and P for each firm assuming that the firms collude...
Consider a market with two identical firms. The market demand is P = 26 – 2Q,...
Consider a market with two identical firms. The market demand is P = 26 – 2Q, where Q = q1 + q2. MC1 = MC2 = 2. 1. Solve for output and price with collusion. 2. Solve for the Cournot-Nash equilibrium. 3. Now assume this market has a Stackelberg leader, Firm 1. Solve for the quantity, price, and profit for each firm. 4. Assume there is no product differentiation and the firms follow a Bertrand pricing model. Solve for the...
Suppose two identical firms are in Bertrand Competition with the following market demand and marginal costs...
Suppose two identical firms are in Bertrand Competition with the following market demand and marginal costs P = 124 − 6Q MC = 4 1 Assuming both firms collude what would the price, quantities and (one period) profits be? 2 Assume both firms are colluding to raise the equilibrium price. If one firm defected from (i.e. broke) their agreement how much would they earn? (Assume the game was played once.) 3 Now assume the game is infinitely repeated and the...
Consider two firms are performing Cournot price competition in two differentiated goods markets. Firm 1 produces...
Consider two firms are performing Cournot price competition in two differentiated goods markets. Firm 1 produces goods 1, and firm 2 produces goods 2, and two market demand functions are given by q1(p1,p2) = 12 - 2p1 +p2 and q2(p1,p2) = 15q22 + 45Q . Furthermore, assume that the two firms have the same cost function such that fixed cost is $20 and variable cost is zero. (10pts) Calculate the equilibrium prices, quantities and profits for both firms. (10pts) Assume...
Suppose that three firms, 1, 2, and 3, produce a homogeneous product in a market with...
Suppose that three firms, 1, 2, and 3, produce a homogeneous product in a market with market demand Q = 40 – 2p. Each firm has constant marginal cost c = 2 and has no other costs. (a) If the three firms are Cournot competitors who simultaneously and independently choose outputs, what is the equilibrium industry output? (b) If the firms can collude to jointly choose output to maximize their total profit, what would be the industry output? (c) Now...
Suppose that two firms compete in the same market producing homogenous products with the following inverse...
Suppose that two firms compete in the same market producing homogenous products with the following inverse demand function: P=1,000-(Q1+Q2) The cost function of each firm is given by: C1=4Q1 C2=4Q2 Suppose that the two firms engage in Bertrand price competition. What price should firm 1 set in equilibrium? What price should firm 2 set? What are the profits for each firm in equilibrium? What is the total market output? Suppose that the two firms collude in quantity, i.e., acting together...
Consider the infinitely repeated version of the Cournot duopoly model where price in the market is...
Consider the infinitely repeated version of the Cournot duopoly model where price in the market is given by P = 100 – Q for Q= q1 + q2 and marginal cost of production for both firms is given by c= 10. a) What is the Nash equilibrium of the static game? What is the profit of each firm? b) If there was only one firm in the market, and P = 100-q1, what is the static monopoly optimum? What is...
11. Suppose two firms (1 and 2) sell differentiated products and compete by setting prices. The...
11. Suppose two firms (1 and 2) sell differentiated products and compete by setting prices. The demand functions are q1 = 7 − P1 + (P2/2) and q2 = 7 − P2 + (P1/2). Firms have a zero cost of production. (a) Find the Nash equilibrium in the simultaneous-move game. Also find the quantities sold by each firm. [5 marks] (b) Find the subgame-perfect equilibrium if 1 moves before 2. Also find the quantities sold by each firm. [5 marks]...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT