Question

Consider the production function Y = F (K, L) = Ka * L1-a, where 0 <...

Consider the production function Y = F (K, L) = Ka * L1-a, where 0 < α < 1. The national saving rate is s, the labor force grows at a rate n, and capital depreciates at rate δ.

(a) Show that F has constant returns to scale.

(b) What is the per-worker production function, y = f(k)?

(c) Solve for the steady-state level of capital per worker (in terms of the parameters of the model).

(d) Solve for the golden-rule steady-state level of capital per worker. (in terms of the parameters of the model).    

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider how unemployment would affect the Solow growth model. Suppose that output is produced according to...
Consider how unemployment would affect the Solow growth model. Suppose that output is produced according to the production function Y = Kα [(1 – u)L]1-α where K is capital, L is the labor force, and u is the natural rate of unemployment. The national saving rate is s, the labor force grows at rate n, and capital depreciates at rate δ. a. Write a condition that describes the golden rule steady state of this economy. b. Express the golden rule...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves 24% of output each period, and 5% of the capital stock depreciates each period. The population grows 2% annually. Technology grows 1% annually. You begin with 1000 workers and 1 unit of capital, and a tech- nology level equal to 1. a) Write the production function in per-eective-worker terms, so that per-effective-worker output (y = Y/LE ) is a function of per-effective-worker capital (k=...
Suppose that output (Y ) in an economy is given by the following aggregate production function:...
Suppose that output (Y ) in an economy is given by the following aggregate production function: Yt = Kt + Nt where Kt is capital and Nt is the population. Furthermore, assume that capital depreciates at rate δ and that savings is a constant proportion s of income. You may assume that δ > s. Suppose that the population remains constant. Solve for the steady-state level of capital per worker. Now suppose that the population grows at rate n. Solve...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that the depreciation rate is 5 percent per year. Make a table showing steady-state capital per worker, output per worker, and consumption per worker for saving rates of 0 percent, 10 percent, 20 percent, 30 percent, and so on. Round your answers to two decimal places. (You might find it easiest to use a computer spreadsheet then transfer your answers to this table.) Steady State...
Answer the following Y = f(k) = ka, where a = 0.25 S = 0.3 δ...
Answer the following Y = f(k) = ka, where a = 0.25 S = 0.3 δ = 0.2 n = 0.05 g= 0.02 a. Find the steady state capital per effective worker, output per effective worker, investment per effective worker, and consumption per effective worker. b. Find the steady state growth rate of capital per worker, output per worker, investment per worker, and consumption per worker. c. Find the steady state growth rate of capital, output, investment, and consumption. d....
If the production function is given by Yt=A(KtLt) 0.5 where Y is the output, A is...
If the production function is given by Yt=A(KtLt) 0.5 where Y is the output, A is the technology, L refers to the labor stock, and K is the capital stock. Suppose that the saving rate (s) equals 0.6 and the depreciation rate (δ) is 0.3 a. Write the output and capital accumulation equations in terms of the capital per worker? b. Find the steady state capital, output, investment, and consumption? c. What would happen to the steady state capital if...
Assume that the production function in an economy is given by y=k1/2, where y and k...
Assume that the production function in an economy is given by y=k1/2, where y and k are the per-worker levels of output and capital, respectively. The savings rate is given by s=0.2 and the rate of depreciation is 0.05. What is the optimal savings rate to achieve the golden-rule steady state level of k?
Use information to answer questions below. Y = f(k) = ka, where a = 0.25 S...
Use information to answer questions below. Y = f(k) = ka, where a = 0.25 S = 0.3 δ = 0.2 n = 0.05 g= 0.02 a. Find the steady state capital per effective worker, output per effective worker, investment per effective worker, and consumption per effective worker. b. Find the steady state growth rate of capital per worker, output per worker, investment per worker, and consumption per worker. c. Find the steady state growth rate of capital, output, investment,...
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L)....
Solow Growth Model Question: Consider an economy where output (Y) is produced according to function Y=F(K,L). L is number of workers and Y is the capital stock. Production function F(K,L) has constant returns to scale and diminishing marginal returns to capital and labor individually. Economy works under assumption that technology is constant over time. The economy is in the steady-state capital per worker. Draw graph. Next scenario is that the rate of depreciation of capital increases due to climate change...
Question 1 Production is given by: ? 1−? ?≡?(?,?)=?? ? where ??+1 = (1 + ?)??...
Question 1 Production is given by: ? 1−? ?≡?(?,?)=?? ? where ??+1 = (1 + ?)?? and ??(0,1) Show that F exhibits a constant return to scale technology. Express output as a function of the capital labor ratio ?? = ?? ∕ ??. Find the dynamical system (describing the evolution of ?? over time) under the assumption that the saving rate is ? ?(0,1) and the depreciation rate is ? ∈ (0,1]. What is the growth rate of ??, ???≡(??+1...