Question

Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm...

Consider an asymmetric Cournot duopoly game, where the two firms have different costs of production. Firm 1 selects quantity q1 and pays the production cost of 2q1 . Firm 2 selects quantity q2 and pays the production cost 4q2 . The market price is given by p = 12 − q1 − q2 . Thus, the payoff functions are u1 (q1,q2) = (12 − q1 − q2 ) q1 − 2q1 and u2 ( q1 , q2 ) = (12 − q1 − q2) q2 − 4q2 .

a.) Calculate the firms’ best-response functions BR1( q2 ) and BR2( q1 )

b.) Find the Nash equilibrium of this game.

Homework Answers

Answer #1

a) Pay-off funtion for firm -1,

For maximiing payoff, the partial differential of payoff with respect to q1 has to be 0.

This is the best response function for Firm-1

Payoff for firm-2,

For maximiing payoff, the partial differential of payoff with respect to q2 has to be 0.

This is the best response function for Firm-2

b) For obtaining the Nash Equlibrium, we need to solve the best response functions for both firms simultaneously

That is the Nash equlibrium is (q1,q2) = (4,2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand...
Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. a. Q1 = 80 - 4Q2 and Q2 = 80 - 4Q1. b. Q1 = 10 - (1/4)Q2 and Q2 = 10 - (1/4)Q1. c. Q1 = 80 - 2Q2...
Two Cournot firms produce slightly different products. Product prices depend on both firms' outputs and are...
Two Cournot firms produce slightly different products. Product prices depend on both firms' outputs and are determined by the following equations P1 = 70 - 2Q1 - Q2, P2 = 100 - Q1- 2Q2. Both Firm 1 and Firm 2 have constant marginal cost of $10 and zero fixed cost. Firm 1 chooses Q1 and Firm 2 chooses Q2. (3pts) Find Firm 1's best response as a function of Firm 2's output Q2.   (3pts) Find Firm 2's best response as...
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2...
Consider a duopoly with two firms with the cost functions: Firm 1: C1(q1)=5q1 Firm 2: C2(q2)=5q2 The firms compete in a market with inverse demand p = 300 - 8Q where Q=q1+q2. The firms compete in a Cournot fashion by choosing output simultaneously.   What is the Nash-Cournot equilibrium output of firm 1? Round to nearest .1
Consider a Cournot model of a duopoly where Firm ?? and Firm ?? operate with asymmetric...
Consider a Cournot model of a duopoly where Firm ?? and Firm ?? operate with asymmetric costs. The inverse market demand function is ?? = ?? ???, the marginal cost of Firm ?? is zero, the marginal cost of Firm ?? is ??, and we impose ?? > ?? > 0 and ?? > 2??. The market output ?? is equal to ???? +????, where ???? and ???? are the output levels of Firms ?? and ??, respectively. There are...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q,...
Consider a Cournot duopoly operating in a market with inverse demand P(Q) = a - Q, where Q = q1 + q2 is the aggregate quantity on the market. Both firms have total costs ci(qi) = cqi, but demand is uncertain: it is High (a = aH) with probability theta and low (a= aL) with probability 1 - theta. Furthermore, information is asymmetric: firm 1 knows whether demand is high or low, but firm 2 does not. All this is...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function...
There is a Cournot duopoly competition between Firm 1 and Firm 2. The inverse demand function is given by P(Q)=100-q, where Q=q1+q2 and qi denotes the quantity produced by firm i for all iÎ {1, 2} and the cost function is given by ci(qi)=10qi. Describe this problem as a normal-form game. Find pure-strategy Nash Equilibria for both firms.
There is a Cournot game consisting of two different firms that produce the same goods. Quantity...
There is a Cournot game consisting of two different firms that produce the same goods. Quantity produced by firm one = q Quantity produced by firm two = q2 The marginal cost for firm one equals average cost, which is 3. The marginal cost for firm two equals average cost, which is 4. The formula for the inverse demand curve of the market is P = 70 - (q1 +q2). Answer the following questions with work: 1. What is the...
A product is produced by two profit-maximizing firms in a Stackelberg duopoly: firm 1 chooses a...
A product is produced by two profit-maximizing firms in a Stackelberg duopoly: firm 1 chooses a quantity q1 ? 0, then firm 2 observes q1 and chooses a quantity q2 ? 0. The market price is determined by the following formula: P ( Q ) = 4 ? Q , where Q = q(1) +q(2) . The cost to firm i of producing q i is Ci( qi ) = q^2)i . (Note: the only difference between this problem and...
Consider the infinitely repeated version of the Cournot duopoly model where price in the market is...
Consider the infinitely repeated version of the Cournot duopoly model where price in the market is given by P = 100 – Q for Q= q1 + q2 and marginal cost of production for both firms is given by c= 10. a) What is the Nash equilibrium of the static game? What is the profit of each firm? b) If there was only one firm in the market, and P = 100-q1, what is the static monopoly optimum? What is...
Answer the following question(s) based on this information: Two firms in a Cournot duopoly produce quantities...
Answer the following question(s) based on this information: Two firms in a Cournot duopoly produce quantities Q 1 and Q 2 and the demand equation is given as P = 80 - 2Q 1 - 2Q 2. The firms' marginal cost are identical and given by MCi(Qi) = 4Qi, where i is either firm 1 or firm 2. Based on this information firm 1 and 2's respective optimal Cournot quantity will be: a. Q1 = 40 and Q2 = 40...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT