Question

Brittanys preferance for money income and leisure can be exoressed as U(Y,L)= (Y-200)*(L-50). This utitlity function...

Brittanys preferance for money income and leisure can be exoressed as U(Y,L)= (Y-200)*(L-50). This utitlity function implies that Brittany's marginal utility of leisure is (Y-200) and her marginal utility of money income is (L-50). There are 168 hours in the week available to split between work and leisure. Brittany earns $20 per hour after taxes. She also recieves $400 worth of welfare benefits each week regardless of how much she works.

A) Graph Brittany budget line.

B) Find Brittanys optimal amount of income, leisure and work

Homework Answers

Answer #1

Utility function is U(Y,L)= (Y-200)*(L-50). There are 168 hours in the week available Brittany earns $20 per hour after taxes. She also recieves $400 worth of welfare benefits each week

Now budget line has an equation Y = (168 - L)*wage rate + non-labor income

Y = (168 - L)*20 + 400

Y = 3360 - 20L + 400

Y + 20L = 3760

From the utility function |MRS| = (L - 50)/(Y - 200). Optimum choice has |MRS| = slope of budget

(L - 50)/(Y - 200) = 1/20

20L - 1000 = Y - 200

Y = 20L - 800

Substitute this in the budget line

20L - 800 + 20L = 3760

40L = 4560

L = 114

Labor hours = (168 - 114) = 54 hours and leisure hours = 114. Optimal income Y = 20*54 + 400 = $1480

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on...
John’s utility function is represented by the following: U(C,L) = (C-400)*(L-100), where C is expenditure on consumption goods and L is hours of leisure time. Suppose that John receives $150 per week in investment income regardless of how much he works. He earns a wage of $20 per hour. Assume that John has 110 non-sleeping hours a week that could be devoted to work. a.Graph John’s budget constraint. b.Find John’s optimal amount of consumption and leisure. c.John inherits $300,000 from...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100 hours to divide between work and leisure per week wage is $20/hr 1. Write down budget constraint in terms of consumption and hours of work 2.Tom make decisions on hours of work, leisure and consumption to max. utility. Explain why we can collapse this problem to one in which he chooses hours of leisure only 3. Find optimal hours of work and total consumption...
Alice's utility function is U ( C , L ) = C · L She can...
Alice's utility function is U ( C , L ) = C · L She can work up to 80 hours each week and she has no non-labor income. 1)If Alice's non-labor income is zero, what will Alice's reservation wage be? 2)If Alice's non-labor income is $168 per week, what will Alice's reservation wage be? 3)If Alice's non-labor income is zero, how many hours will Alice work when wage is $20 per hour? 4)If Alice's non-labor income is zero, how...
Emma has a utility function of u(c, l) = 9c1/3l 2/3 . She works as a...
Emma has a utility function of u(c, l) = 9c1/3l 2/3 . She works as a policewoman at a wage of 30 dollars an hour. She doesn’t have any income outside of her work. Calculate the optimal hours of work she would pick and her optimal consumption.
The following question will compare the labor leisure choice of two women, Jill and Kayla. Both...
The following question will compare the labor leisure choice of two women, Jill and Kayla. Both women have 168 hours that they could use in the week for work. Jillloves impressing herfriends with all of the latest and greatest material goods. The following utility function describes herpreferences: U(C,L) = C2L where C represents herconsumption of goods and services and L University of California, DavisProfessor Jenna StearnsDepartment of EconomicsWinter 2018represents herleisure time. She gets $200 per week from a trust fund....
Bernice is has the following utility over leisure (l) and consumption(c): u(l,c) = min{l,c}. We presume...
Bernice is has the following utility over leisure (l) and consumption(c): u(l,c) = min{l,c}. We presume that the wage is $9 and that the time allocation is T = 100. The price of consumption is normalized at $1. She has no other income. (a) How much will she consume and how much time will she work? (b) If the wage rises to $19, how much will she consume and how much time will she work? (c) Is the supply of...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2),...
Tom has preferences over consumption and leisure of the following form: U = ln(c1)+ 2 ln(l)+βln(c2), where ct denotes the stream of consumption in period t and l, hours of leisure. He can choose to work only when he is young. If he works an hour, he can earn 10 dollars (he can work up to 100 hours). He can also use savings to smooth consumption over time, and if he saves, he will earn an interest rate of 10%...
Vincent Price utility function is U(X,Y)=X2Y, which the following marginal utilities: MUX=2XY,   MUY=X2 His income is $200...
Vincent Price utility function is U(X,Y)=X2Y, which the following marginal utilities: MUX=2XY,   MUY=X2 His income is $200 and the price of X is $6 and the price of Y is $4. A) Find Vincent's optimal basket given those price and income more step by step plz I couldn't understand the other answer that was very close to this answer
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c, l) = c 2/3 l 1/3 . Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c,l) = c2/3l1/3. Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1 and the price of leisure...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT