Question

Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4...

Assume that an economy is described by the Solow growth model as below:

Production Function: y=50K^0.4 (LE)^0.6

Depreciation rate: S

Population growth rate: n

Technological growth rate:g

Savings rate: s

a. What is the per effective worker production function?

b. Show that the per effective worker production function derived in part a above exhibits diminishing marginal returns in capital per effective worker

C.Solve for the steady state output per effective worker as a function of s,n,g, and S

d. A developed country has a saving rate of 28 percent and a population growth rate of 1 percent per year. A less developed country has a saving rate of 10 percent and a population growth rate of 4 percent per year. In both countries, g = 0.02 and S = 0.04. Find the steady state value of output per effective worker, y^steady state for each country. Illustrate your answer with a graph showing steady state capital per effective worker, output per effective worker and consumption per effective worker.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves 24% of output each period, and 5% of the capital stock depreciates each period. The population grows 2% annually. Technology grows 1% annually. You begin with 1000 workers and 1 unit of capital, and a tech- nology level equal to 1. a) Write the production function in per-eective-worker terms, so that per-effective-worker output (y = Y/LE ) is a function of per-effective-worker capital (k=...
Assume that an economy described by the Solow model has the production function Y = K...
Assume that an economy described by the Solow model has the production function Y = K 0.4 ( L E ) 0.6, where all the variables are defined as in class. The saving rate is 30%, the capital depreciation rate is 3%, the population growth rate is 2%, and the rate of change in labor effectiveness (E) is 1%. For this country, what is f(k)? How did you define lower case k? Write down the equation of motion for k....
Consider the Solow growth model. The production function is given by Y = K^αN^1−α, with α...
Consider the Solow growth model. The production function is given by Y = K^αN^1−α, with α = 1/3. There are two countries: X and Y. Country X has depreciation rate δ = 0.05, population growth n = 0.03, and savings rate s = 0.24. Country X starts with initial capital per worker k0 = 1 Country Y has depreciation rate δ = 0.08, population growth n = 0.02, and savings rate s = 0.3. Country Y starts with capital per...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital share of 1/3, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of population growth of 2 percent, and a rate of labor-augmenting technological change of 1 percent. It is in steady state. a. Does the economy have more or less capital than at the Golden Rule steady state? How do you know? To achieve the Golden Rule steady...
3- Growth Model Suppose that the output (Y) in the economy is given by the following...
3- Growth Model Suppose that the output (Y) in the economy is given by the following aggregate production function. Yt = Kt +Nt where the Kt is capital and Nt is population. Furthermore assume that the capital depreciate at the rate of ẟ and That saving constant and proportion s of income you may assume that ẟ>s 1-suppose that the population remains constant . solve for the steady state level of capital per worker 2- now suppose that the population...
2. Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and...
2. Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people consume after saving a proportion of income, C=(1-s)Y. The capital per worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k. (a) Describe the steady state k* as a function of other variables (b) Suppose that there are two countries with the same steady state capital per worker k* and zero growth rate of population(n=0), but differ by saving rate, s and depreciation rate, d. So we assume...
Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people...
Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people consume after saving a proportion of income, C=(1-s)Y. The capital per worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k. (a) Describe the steady state k* as a function of other variables. (b) Suppose that there are two countries with the same steady state capital per worker k* and zero growth rate of population(n=0), but differ by saving rate, s and depreciation rate, d. So we assume that...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that the depreciation rate is 5 percent per year. Make a table showing steady-state capital per worker, output per worker, and consumption per worker for saving rates of 0 percent, 10 percent, 20 percent, 30 percent, and so on. Round your answers to two decimal places. (You might find it easiest to use a computer spreadsheet then transfer your answers to this table.) Steady State...
Consider how unemployment would affect the Solow growth model. Suppose that output is produced according to...
Consider how unemployment would affect the Solow growth model. Suppose that output is produced according to the production function Y = Kα [(1 – u)L]1-α where K is capital, L is the labor force, and u is the natural rate of unemployment. The national saving rate is s, the labor force grows at rate n, and capital depreciates at rate δ. a. Write a condition that describes the golden rule steady state of this economy. b. Express the golden rule...
In a solow-type economy with Cobb-Douglas production, assume that the population growth rate depends on the...
In a solow-type economy with Cobb-Douglas production, assume that the population growth rate depends on the current level of output per worker, y, so that n=my, where m is a positive constant. For simplicity, assume d=0 a) Find an expression for the growth rate of the capital-labor ratio, k̇ / k b) Find expressions for the steady states of y and k c) Find an expression for the growth rate of Y in steady state