Question

Consider how unemployment would affect the Solow growth model.
Suppose that output is produced according to the production
function Y = K^{α} [(1 – u)L]^{1-α} where K is
capital, L is the labor force, and u is the natural rate of
unemployment. The national saving rate is s, the labor force grows
at rate n, and capital depreciates at rate δ.

**a. Write a condition that describes the golden rule
steady state of this economy.**

**b. Express the golden rule levels of capital per worker,
k* _{G}, and output per worker, y*_{G}, as functions
of the parameters, s, n, δ, α, and u.**

Answer #1

Consider the production function Y = F (K, L) = Ka *
L1-a, where 0 < α < 1. The national saving rate is
s, the labor force grows at a rate n, and capital depreciates at
rate δ.
(a) Show that F has constant returns to scale.
(b) What is the per-worker production function, y = f(k)?
(c) Solve for the steady-state level of capital per worker (in
terms of the parameters of the model).
(d) Solve for the...

17. Solow growth The production function in your country is: Y =
K^0.5(LE)^0.5.
Your economy saves 24% of output each period, and 5% of the
capital stock depreciates each period. The population grows 2%
annually. Technology grows 1% annually. You begin with 1000 workers
and 1 unit of capital, and a tech- nology level equal to 1.
a) Write the production function in per-eective-worker terms, so
that per-effective-worker output (y = Y/LE ) is a function of
per-effective-worker capital (k=...

Solow Growth Model Question: Consider an economy where output
(Y) is produced according to function Y=F(K,L). L is number of
workers and Y is the capital stock. Production function F(K,L) has
constant returns to scale and diminishing marginal returns to
capital and labor individually. Economy works under assumption that
technology is constant over time. The economy is in the
steady-state capital per worker. Draw graph. Next scenario is that
the rate of depreciation of capital increases due to climate change...

Consider the Solow growth model. The production function is
given by Y = K^αN^1−α, with α = 1/3. There are two countries: X and
Y. Country X has depreciation rate δ = 0.05, population growth n =
0.03, and savings rate s = 0.24. Country X starts with initial
capital per worker k0 = 1
Country Y has depreciation rate δ = 0.08, population growth n =
0.02, and savings rate s = 0.3. Country Y starts with capital per...

2. Consider a numerical example using the Solow growth model:
The production technology is Y=F(K,N)=K0.5N0.5 and people consume
after saving a proportion of income, C=(1-s)Y. The capital per
worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k.
(a) Describe the steady state k* as a function of other
variables
(b) Suppose that there are two countries with the same steady
state capital per worker k* and zero growth rate of
population(n=0), but differ by saving rate, s and depreciation
rate, d. So we assume...

Suppose that output (Y ) in an economy is given by the following
aggregate production function: Yt = Kt + Nt
where Kt is capital and Nt is the population. Furthermore,
assume that capital depreciates at rate δ and that savings is a
constant proportion s of income. You may assume that δ > s.
Suppose that the population remains constant. Solve for the
steady-state level of capital per worker.
Now suppose that the population grows at rate n. Solve...

Consider a numerical example using the Solow growth model: The
production technology is Y=F(K,N)=K0.5N0.5 and people consume after
saving a proportion of income, C=(1-s)Y. The capital per worker,
k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k.
(a) Describe the steady state k* as a function of other
variables.
(b) Suppose that there are two countries with the same steady
state capital per worker k* and zero growth rate of
population(n=0), but differ by saving rate, s and depreciation
rate, d. So we assume that...

Assume that an economy is described by the Solow growth model as
below:
Production Function: y=50K^0.4 (LE)^0.6
Depreciation rate: S
Population growth rate: n
Technological growth rate:g
Savings rate: s
a. What is the per effective worker production function?
b. Show that the per effective worker production function
derived in part a above exhibits diminishing marginal returns in
capital per effective worker
C.Solve for the steady state output per effective worker as a
function of s,n,g, and S
d. A...

Which of the following statements about the Solow growth model
is FALSE?
A. The higher steady-state capital per capita, the higher the
output/income per capita.
B. The higher output/income per capita, the higher consumption
per capita.
C. Golden-rule capital per capita must be a steady state, but
not all steady-state is also a golden-rule.
D. Golden-rule capital per capita can be achieved by setting
the saving rate at the appropriate level.

Consider the Solow grow model. Suppose for each unit of savings,
the government consumes a fraction τ , so only the fraction 1 − τ
would accumulate the capital stock. In other words, the law of
motion for capital becomes:
K1= (1 − δ)K + (1 − τ )sY
where δ is the depreciation rate, s is the saving rate, and Y is
aggregate output. Suppose production function is Y = zF(K, N).
Follow the same steps we did in...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 5 minutes ago

asked 5 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 13 minutes ago

asked 15 minutes ago

asked 21 minutes ago

asked 21 minutes ago

asked 21 minutes ago

asked 35 minutes ago

asked 36 minutes ago