Question

A closed economy (NX = 0) without government (G = T = 0) has a production...

A closed economy (NX = 0) without government (G = T = 0) has a production function Y = K^1/4 ^L 3/4 . Capital depreciates at a rate of 3 percent per year. Workers spend 76 percent of their income each year. Investment adds up to the capital stock which is available for production next year. Assume that capital per worker is 5.0625 at the beginning of 2017 and the number of workers stays the same each year.

(a) Find output per worker, consumption per worker, investment per worker, and depreciation per worker in 2017. How much will capital per worker be at the beginning of 2018?

(b) Find the steady-state capital per worker, output per worker, consumption per worker, investment per worker, and depreciation per worker.

(c) Assume that the economy is at its steady state. (i) Find the marginal product of capital. (ii) If the government wishes to maximize consumption per worker in the (very) long run, should they increase or decrease the saving rate? Explain. (iii) Would the current generation approve of the change in the saving rate discussed in (ii)? Explain

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assuming the following Cobb-Douglas production function is given for a closed economy without government. i. Where...
Assuming the following Cobb-Douglas production function is given for a closed economy without government. i. Where returns to capital = 0.5; and rate of depreciation of physical capital Determine the steady-state level of capital per worker. What is the savings rate at which the steady-state level of capital is achieved?             [6marks] ii Prove that the steady-state level of output is the ratio of the saving rate to the rate of depreciation                                                                       [6 marks] iii. Assuming that , what will be...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that the depreciation rate is 5 percent per year. Make a table showing steady-state capital per worker, output per worker, and consumption per worker for saving rates of 0 percent, 10 percent, 20 percent, 30 percent, and so on. Round your answers to two decimal places. (You might find it easiest to use a computer spreadsheet then transfer your answers to this table.) Steady State...
Both population and the workforce grow at the rate of n = 1% per year in...
Both population and the workforce grow at the rate of n = 1% per year in a closed economy. Consumption is C = 0.5(1 -t)Y, where t is the tax rate on income and Y is total output. The per-worker production function is y = 8k1/2, where y is output per worker and k is the capital-labor ratio. The depreciation rate of capital is d = 9% per year. Suppose for now that there are no government purchases and the...
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4...
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4 (LE)^0.6 Depreciation rate: S Population growth rate: n Technological growth rate:g Savings rate: s a. What is the per effective worker production function? b. Show that the per effective worker production function derived in part a above exhibits diminishing marginal returns in capital per effective worker C.Solve for the steady state output per effective worker as a function of s,n,g, and S d. A...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves 24% of output each period, and 5% of the capital stock depreciates each period. The population grows 2% annually. Technology grows 1% annually. You begin with 1000 workers and 1 unit of capital, and a tech- nology level equal to 1. a) Write the production function in per-eective-worker terms, so that per-effective-worker output (y = Y/LE ) is a function of per-effective-worker capital (k=...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital...
An economy has the following Cobb-Douglas production function: Y = Ka(LE)1-a The economy has a capital share of 1/3, a saving rate of 24 percent, a depreciation rate of 3 percent, a rate of population growth of 2 percent, and a rate of labor-augmenting technological change of 1 percent. It is in steady state. a. Does the economy have more or less capital than at the Golden Rule steady state? How do you know? To achieve the Golden Rule steady...
Portugal has the following per-worker production function: y=3k^0.05 Depreciation rate is 0.08, population growth rate is...
Portugal has the following per-worker production function: y=3k^0.05 Depreciation rate is 0.08, population growth rate is 0.02. Saving is S=0.2Y, where S is national saving and Y is national output. (a) what are the steady state value of capital-labour ratio, output per worker and consumption per worker? (b) Suppose that national saving increases to 0.4, what are the steady state value of capital-labour ratio, output per worker and consumption per worker? (c) Suppose depreciation rate increases to 0.20, what are...
If the production function is given by Yt=A(KtLt) 0.5 where Y is the output, A is...
If the production function is given by Yt=A(KtLt) 0.5 where Y is the output, A is the technology, L refers to the labor stock, and K is the capital stock. Suppose that the saving rate (s) equals 0.6 and the depreciation rate (δ) is 0.3 a. Write the output and capital accumulation equations in terms of the capital per worker? b. Find the steady state capital, output, investment, and consumption? c. What would happen to the steady state capital if...
Consider an economy that is characterized by the Solow Model. The (aggregate) production function is given...
Consider an economy that is characterized by the Solow Model. The (aggregate) production function is given by: Y = 1.6K1/2L1/2 In this economy, workers consume 75% of income and save the rest.  The labour force is growing at 3% per year while the annual rate of capital depreciation is 5%. Initially, the economy is endowed with 4500 units of capital and 200 workers. Is the economy in its steady state?  Yes/no, explain.  If the economy is not in its steady state, explain what...
An economy has a Cobb–Douglas production function: Y=Kα(LE)1−αY=Kα(LE)1−α The economy has a capital share of 0.30,...
An economy has a Cobb–Douglas production function: Y=Kα(LE)1−αY=Kα(LE)1−α The economy has a capital share of 0.30, a saving rate of 42 percent, a depreciation rate of 5.00 percent, a rate of population growth of 2.50 percent, and a rate of labor-augmenting technological change of 4.0 percent. It is in steady state. Solve for capital per effective worker (k∗)(k∗), output per effective worker (y∗)(y∗), and the marginal product of capital. k∗=k∗= y∗=y∗= marginal product of capital =
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT