Question

a) If a firm is employing inputs X1 and X2 such that (MPX1/MPX2) > (w1/w2), where...

a) If a firm is employing inputs X1 and X2 such that (MPX1/MPX2) > (w1/w2), where w1 and w2 are the prices of X1 and X2, respectively. Is the firm behaving optimally? Why or why not? Show this situation on a graph.

b) What should the firm do? Why?

Homework Answers

Answer #1

If the current input combination results in (MPX1/MPX2) > (w1/w2), it implies that the firm is using too much of factor X2 and too little of X1 so that the marginal product of X1 per dollar is more than that of X2. Equimarginal principle is not satisfied,.

This also suggests that MRTS > Price ratio so Isoquant is steeper than budget constraint. It should therefore use more X1 and reduce its usage of X2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A firm produces a single output using two inputs x1, x2. Let p, w1, w2 be...
A firm produces a single output using two inputs x1, x2. Let p, w1, w2 be the prices. The production function f is C2 (twice continuously differentiable). Atp=5,w1 =1,w2 =2,theoptimalinputsarex∗1 =2,x∗2 =2. Ifεx1p =0.2 (the elasticity of x1 w.r.t. p), εx1w1 = −0.4 (the elasticity of x1 w.r.t. w1), and εx2 w2 = −0.5 (the elasticity of x2 w.r.t. w2 ), then, can you derive εx1 w2 , εx2 p and εx2w1? If so, please find them
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the...
Consider a firm with production function given by f(x1, x2) = (x1)^1/4 (x2)^1/2 : Assume the prices of inputs 1 and 2 are w1 and w2, respectively, and the market price of the product is p. (a) Find the levels of the inputs that maximize the profits of the firm (X1, X2) (b) Derive the supply function of the firm (i.e., y = f (x 1 ; x 2 ))
Suppose the production function of a firm is given by f (x1; x2) = min{x1, x2}...
Suppose the production function of a firm is given by f (x1; x2) = min{x1, x2} (a) Calculate the conditional demand functions of the firm assuming w1 = 2; w2 = 4, and y = 8 (b) Calculate the minimum cost of the firm to produce 8 units of the good when w1 = 2 and w2 = 4:
Let the input prices be w = (w1, w2) and output price be p. Derive the...
Let the input prices be w = (w1, w2) and output price be p. Derive the cost function c (w; y) and the output supply function y (w, p) for firms with the following production functions: a] f (x1; x2) = sqrt(x1) + 2sqrt(x2) b] f (x1; x2) = min [sqrt(x1), 2 sqrt(x2)]
With a production function is y = ln x1 + ln x2, and a w1= 4...
With a production function is y = ln x1 + ln x2, and a w1= 4 and w2 = 16, what would be the total cost function?
2 .Suppose the production function of a firm is given by f (x1, x2) = 2x1...
2 .Suppose the production function of a firm is given by f (x1, x2) = 2x1 + 4x2 (a) Calculate the conditional demand functions of the firm assuming w1 = 2; w2 = 3, and y = 8 (b) Calculate the minimum cost of the firm to produce 8 units of the good when w1 = 2 and w2 = 3
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0...
A firm’s production function is given as y=(x1)^(1/2) * (x2-1)^(1/2) where y≥0 for the output, x1≥0 for the input 1 and x2≥0 for the input 2. The prices of input 1 and input 2 are given as w1>0 and w2>0, respectively. Answer the following questions. Which returns to scale does the production function exhibit? Derive the long-run conditional input demand functions and the long-run cost function.
A product is produced using two inputs x1 and x2 costing P1=$10 and P2 = $5...
A product is produced using two inputs x1 and x2 costing P1=$10 and P2 = $5 per unit respectively. The production function is y = 2(x1)1.5 (x2)0.2 where y is the quantity of output, and x1, x2 are the quantities of the two inputs. A)What input quantities (x1, x2) minimize the cost of producing 10,000 units of output? (3 points) B)What is the optimal mix of x1 and x2 if the company has a total budget of $1000 and what...
1. Consider a firm with technology that can be represented by the following production function: f(x1,...
1. Consider a firm with technology that can be represented by the following production function: f(x1, x2) = min {x1, x2} + x2 Input 1 costs w1 > 0 per unit and input 2 costs w2 > 0 per unit. (a) Draw the isoquant associated with an output of 4. Make sure to label any intercepts and slopes. (b) Find the firm’s long-run cost function, c(w1, w2, y)
Yes x1 it is to the power a and x2 is to the power b. It...
Yes x1 it is to the power a and x2 is to the power b. It is the Cobb Douglas function. Suppose that production function is given by f(x1,x2)=Ax1ax2b. Suppose the costs of the firm are linear and given by C(x1xx2)=(w1x1+w2x2)/B, where B is a parameter denoting the level of cost-minimizing technology of the firm. Assume the firm can charge the price p for their output. (a) Set up the profit function and take the first-order conditions. (b) Suppose that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT