Question

A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization...

A consumer has utility function

U(x1,x2)= x1x2 / (x1 + x2)

(a) Solve the utility maximization problem. Construct the Marshallian demand function D(p,I) and show that the indirect utility function is

V (p, I) = I / (p1+ 2 * sqrt (p1*p2) + p2)

(b) Find the corresponding expenditure function e(p; u). HINT: Holding p fixed, V and e are inverses. So you can find the expenditure function by working with the answer to part (a).

(c) Construct the Hicksian demand function. HINT: use Shephard’s lemma.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the utility function: u( x1 , x2 ) = 2√ x1 + 2√x2 a) Find...
Consider the utility function: u( x1 , x2 ) = 2√ x1 + 2√x2 a) Find the Marshallian demand function. Use ( p1 , p2 ) to denote the exogenous prices of x1 and x2 respectively. Use y to denote the consumer's disposable income. b) Find the indirect utility function and verify Roy's identity c) Find the expenditure function d) Find the Hicksian demand function
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the...
Consider the Cobb-Douglas utility function u(x1,x2)=x1^(a)x2^(1-a). a. Find the Hicksian demand correspondence h(p, u) and the expenditure function e(p,u) using the optimality conditions for the EMP. b. Derive the indirect utility function from the expenditure function using the relationship e(p,v(p,w)) =w. c. Derive the Walrasian demand correspondence from the Hicksian demand correspondence and the indirect utility function using the relationship x(p,w)=h(p,v(p,w)). d. vertify roy's identity. e. find the substitution matrix and the slutsky matrix, and vertify the slutsky equation. f....
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1...
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1 and x2 (as functions of p1, p2, and m). Thank you!
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption of good 1 and x2 is her consumption of good 2. The price of good 1 is p1, the price of good 2 is p2, and her income is M. Setting the marginal rate of substitution equal to the price ratio yields this equation: p1/p2 = (1+x2)/(A+x1) where A is a number. What is A? Suppose p1 = 11, p2 = 3 and M...
Suppose an individual consumers two goods, with utility function U (x1; x2) = x1 + 6(x1x2)^1/2...
Suppose an individual consumers two goods, with utility function U (x1; x2) = x1 + 6(x1x2)^1/2 + 9x2. Formulate the utility maximization problem when she faces a budget line p1x1 + p2x2 = I. Find the demand functions for goods 1 and 2. (b) Now consider an individual consumers with utility function U (x1; x2) = x1^1/2 + 3x2^1/2. Formulate the utility maximization problem when she faces a budget line p1x1 + p2x2 = I. Find the demand functions for...
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2...
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2 + X1X2 and the budget constraint P1X1 + P2X2 = M , where M is income, and P1 and P2 are the prices of the two goods. . a. Find the consumer’s marginal rate of substitution (MRS) between the two goods. b. Use the condition (MRS = price ratio) and the budget constraint to find the demand functions for the two goods. c. Are...
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                         &nbs
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                                                                                                                                           a. Show that the above utility function corresponds to (hint:use the MRS between good 1 and good 2. The ->refers to the concept of limits.                  1. The perfect substitute utility function at p=1 2. The Cobb-Douglas utility function as p -->0 3. The Leontiff (of min(x1,x2) as p--> -infinity b. For infinity<p<1, a given level of income I and prices p1 and p2. 1. Find the marshallian...
Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2)....
Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2). Let p = p1 and x = x1. (1) Compute the consumer's individual demand function of good 1 d(p). (2) Compute the price elasticity of d(p). Compute the income elasticity of d(p). Is good 1 an inferior good, a normal good or neither? Explain. (3) Suppose that we do not know the consumer's utility function but we know that the income elasticity of his...
Suppose the indirect utility functions is: v(p1, p2, m) = ( ln(m /p2) , if p1...
Suppose the indirect utility functions is: v(p1, p2, m) = ( ln(m /p2) , if p1 ≥ m. (m−p1)/ p1 + ln(p1/ p2 ), if p1 < m. a) Compute the Marshallian demand for both goods x1 and x2 for the different values of m. b) Based on your answers from (a), can you guess the type of the original utility function u(x) (Hint: It is one of the 5 common utility functions we have taken in the course)? Explain...
Suppose the indirect utility functions is: v(p1, p2, m) = ln (m /p2) , if p1...
Suppose the indirect utility functions is: v(p1, p2, m) = ln (m /p2) , if p1 ≥ m.( m−p1)/ p1 + ln (p1/ p2) , if p1 < m. a) Compute the Marshallian demand for both goods x1 and x2 for the different values of m. b) Based on your answers from (a), can you guess the type of the original utility function u(x) (Hint: It is one of the 5 common utility functions we have taken in the course)?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT