Question

Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2)....

Consider a two good economy. A consumer has a utility function u(x1, x2) = exp (x1x2). Let p = p1 and x = x1.

(1) Compute the consumer's individual demand function of good 1 d(p).

(2) Compute the price elasticity of d(p).

Compute the income elasticity of d(p).

Is good 1 an inferior good, a normal good or neither? Explain.

(3) Suppose that we do not know the consumer's utility function but we know that the income elasticity of his demand is zero. What can we guess about his preferences?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization...
A consumer has utility function U(x1,x2)= x1x2 / (x1 + x2) (a) Solve the utility maximization problem. Construct the Marshallian demand function D(p,I) and show that the indirect utility function is V (p, I) = I / (p1+ 2 * sqrt (p1*p2) + p2) (b) Find the corresponding expenditure function e(p; u). HINT: Holding p fixed, V and e are inverses. So you can find the expenditure function by working with the answer to part (a). (c) Construct the Hicksian...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption of good 1 and x2 is her consumption of good 2. The price of good 1 is p1, the price of good 2 is p2, and her income is M. Setting the marginal rate of substitution equal to the price ratio yields this equation: p1/p2 = (1+x2)/(A+x1) where A is a number. What is A? Suppose p1 = 11, p2 = 3 and M...
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2...
2. A consumer has the utility function U ( X1, X2 ) = X1 + X2 + X1X2 and the budget constraint P1X1 + P2X2 = M , where M is income, and P1 and P2 are the prices of the two goods. . a. Find the consumer’s marginal rate of substitution (MRS) between the two goods. b. Use the condition (MRS = price ratio) and the budget constraint to find the demand functions for the two goods. c. Are...
Consider the utility function: u( x1 , x2 ) = 2√ x1 + 2√x2 a) Find...
Consider the utility function: u( x1 , x2 ) = 2√ x1 + 2√x2 a) Find the Marshallian demand function. Use ( p1 , p2 ) to denote the exogenous prices of x1 and x2 respectively. Use y to denote the consumer's disposable income. b) Find the indirect utility function and verify Roy's identity c) Find the expenditure function d) Find the Hicksian demand function
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1...
1. Using the following utility function, U(x1,x2) = x1x2+x1+2x2+2 Find the demand functions for both x1 and x2 (as functions of p1, p2, and m). Thank you!
A consumer has a utility function of the type U(x1, x2) = max (x1, x2). What...
A consumer has a utility function of the type U(x1, x2) = max (x1, x2). What is the consumer’s demand function for good 1?
Consider a consumer who consumes two goods and has utility function u(x1,x2)=x2 +√x1. The price of...
Consider a consumer who consumes two goods and has utility function u(x1,x2)=x2 +√x1. The price of good 2 is 1, the price of good 1 is p, and income is m. (1) Show that a) both goods are normal, b) good 1 is an ordinary good, c) good 2 is a gross substitute for good 1.
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function...
Consider the following utility function: U(x1,x2) X11/3 X2 Suppose a consumer with the above utility function faces prices p1 = 2 and p2 = 3 and he has an income m = 12. What’s his optimal bundle to consume?
Suppose a consumer has quasi-linear utility: u(x1,x2 ) = 3x1^2/3 + x2 . The marginal utilities...
Suppose a consumer has quasi-linear utility: u(x1,x2 ) = 3x1^2/3 + x2 . The marginal utilities are MU1(x) = 2x1^−1/3 and MU2 (x) = 1. Throughout this problem, assume p2 = 1 1.(a) Sketch an indifference curve for these preferences (label axes and intercepts). (b) Compute the marginal rate of substitution. (c) Assume w ≥ 8/p1^2 . Find the optimal bundle (this will be a function of p1 and w). Why do we need the assumption w ≥ 8/p1^2 ?...
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                         &nbs
Consider the following Constant Elasticity of Substitution utility function U(x1,x2) = x1^p+x2^p)^1/p                                                                                                                                           a. Show that the above utility function corresponds to (hint:use the MRS between good 1 and good 2. The ->refers to the concept of limits.                  1. The perfect substitute utility function at p=1 2. The Cobb-Douglas utility function as p -->0 3. The Leontiff (of min(x1,x2) as p--> -infinity b. For infinity<p<1, a given level of income I and prices p1 and p2. 1. Find the marshallian...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT