Question

Consider the following labour-leisure choice model. U(C,L) = C^(2/3)L^(1/3) C = wN + π – T...

Consider the following labour-leisure choice model. U(C,L) = C^(2/3)L^(1/3)
C = wN + π – T
H= N+ L Where
C: consumption
L: leisure
N: hours worked
H = 50 : total hours
w = 4 : hourly wage
π = 20 : non-labor income T = 10 : lump-sum tax
Suppose the hourly wage changes to w = 5. Perform a decomposition and calculate the substitution, income and total effect for each C, L, N

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c, l) = c 2/3 l 1/3 . Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c)...
Santi derives utility from the hours of leisure (l) and from the amount of goods (c) he consumes. In order to maximize utility, he needs to allocate the 24 hours in the day between leisure hours (l) and work hours (h). Santi has a Cobb-Douglas utility function, u(c,l) = c2/3l1/3. Assume that all hours not spent working are leisure hours, i.e, h + l = 24. The price of a good is equal to 1 and the price of leisure...
Suppose that the consumer’s preferences are given by U(c,l)=2c ^(1/2) +2l ^(1/2) where c is the...
Suppose that the consumer’s preferences are given by U(c,l)=2c ^(1/2) +2l ^(1/2) where c is the level of consumption and l is leisure. The consumer has to allocate 50 hours between leisure and labour. The real wage rate is 10 per hour and the real non-wage income is 160. Assume that there is no government. Note that (∂c ^(1/2)) / (∂c) = (1/2) c^(-1/2) (a) Write the budget constraint of the household. (b) Solve for the tangency condition using the...
A representative consumer living in a Country A values consuming goods (C) and enjoys leisure (l)....
A representative consumer living in a Country A values consuming goods (C) and enjoys leisure (l). The consumer has h = 1 units of time to divide between working and enjoying leisure. For each hour worked, he receives w = 1.5 units of the consumption good. The consumer also owns shares in a factory which gives him an additional π = 0.55 units of income. The government in this economy taxes the consumer and uses the proceeds to buy consumption...
Suppose the representative consumer’s preferences are given by the utility function, U(C, l) = aln C...
Suppose the representative consumer’s preferences are given by the utility function, U(C, l) = aln C + (1- a) ln l Where C is consumption and l is leisure, with a utility function that is increasing both the arguments and strictly quiescence, and twice differentiable. Question: The total quantity of time available to the consumer is h. The consumer earns w real wage from working in the market, receives endowment π from his/her parents, and pays the T lump-sum tax...
3. Suppose that an individual’s utility function for consumption, C, and leisure, L, is given by...
3. Suppose that an individual’s utility function for consumption, C, and leisure, L, is given by U(C, L) = C 0.5L 0.5 This person is constrained by two equations: (1) an income constraint that shows how consumption can be financed, C = wH + V, where H is hours of work and V is nonlabor income; and (2) a total time constraint (T = 1) L + H = 1 Assume V = 0, then the expenditure-minimization problem is minimize...
In the labor-leisure model, the representative consumer receives satisfaction from consumption of goods (C) and from...
In the labor-leisure model, the representative consumer receives satisfaction from consumption of goods (C) and from the consumption of Leisure (L). Let C be the composite good with price $1 and L determines the number of hours of leisure this person consumes. Therefore U = f(C,L) for this consumer. This consumer’s consumption is constrained by time and income. Let her non-labor income, V, be $1200 per week, let the hourly wage rate be $8 and h be the number of...
Bernice is has the following utility over leisure (l) and consumption(c): u(l,c) = min{l,c}. We presume...
Bernice is has the following utility over leisure (l) and consumption(c): u(l,c) = min{l,c}. We presume that the wage is $9 and that the time allocation is T = 100. The price of consumption is normalized at $1. She has no other income. (a) How much will she consume and how much time will she work? (b) If the wage rises to $19, how much will she consume and how much time will she work? (c) Is the supply of...
Suppose u=u(C,L)=4/5 ln⁡(C)+1/5 ln⁡(L), where C = consumption goods, L = the number of days taken...
Suppose u=u(C,L)=4/5 ln⁡(C)+1/5 ln⁡(L), where C = consumption goods, L = the number of days taken for leisure such that L=365-N, where N = the number of days worked at the nominal daily wage rate of $W. The government collects tax on wage income at the marginal rate of t%. The nominal price of consumption goods is $P. Further assume that the consumer-worker is endowed with $a of cash gift. a) Write down the consumer-worker's budget constraint. b) Write down...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100...
Suppose Tom has a utility function U=C*L C= consumption L= hours of leisure Tom has 100 hours to divide between work and leisure per week wage is $20/hr 1. Write down budget constraint in terms of consumption and hours of work 2.Tom make decisions on hours of work, leisure and consumption to max. utility. Explain why we can collapse this problem to one in which he chooses hours of leisure only 3. Find optimal hours of work and total consumption...