5. You are provided with a pair of demand and cost functions.
P = 20,000 - 15.6 Q TC = 400,000 + 4640 Q + 10 Q2
Use the above functions and derive the maximum profits for the firm:
Optimal Q =
Optimal P =
Optimal TR =
Optimal profits =
6. Calculate the break-even output level for the TC function given below. Also check whether MC = ACat this level.
TC = 5 Q2 + 10 Q + 125
Optimal Q =
Optimal AC =
Optimal MC =
7. Calculate the shut-down output level for the TC function given below. Also check whether MC = AVC at this level.
TC = 100 + 17 Q - 8 Q2 + Q3
Optimal Q =
Optimal AVC =
Optimal MC =
Answer 5 : P= 20,000-15.6Q
TR = P* Q = (20,000-15.6Q)*Q = 20,000Q-15.6Q2
MR= 20,000-31.2Q
TC = 40,000+4640Q+10Q2
MC = 4640+20Q
Optiumal Q
MR= MC
20,000-31.2Q= 4640+20Q
20,000-4640 = 31.2Q+20Q
15,360= 51.2Q
15,360/51.2 = Q
Q= 300 units
Optiumal Q= 300 units
Optiumal P = 20,000-15.6*300 = 15,320
Optiumal TR = P*Q = 15,320*300= 4596000
Optiumal TC = 40,000+4640*300+10*300*300
= 2,33,2000
Answer 6 : TC = 5Q2+10Q+125
AC = 5Q+10+125/Q
MC = 10Q+10
AC = MC ( Break even point)
5Q+10+125/Q= 10Q+10
5Q+10+125/Q-10Q-10=0
Q= 5 units
Optiumal Q = 5 units
Optiumal MC = 10*5+10 = 60 units
Optiumal AC = 5*5+10+125/5 = 60 unit
Answer 7 : Shut down output level
TC = 100+17Q-8Q2+Q 3
MC = 17-16Q+3Q2
VC = 17Q-8Q2+Q 3
AVC = 17-16Q+3Q2
MC = AVC ( Shut down point)
17-16Q+3Q2= 17-8Q-Q2
Optiumal Q= 4 units
Optiumal MC = 1
Optiumal AVC = 1( put value of Q = 4 units in AVC derived above)
Get Answers For Free
Most questions answered within 1 hours.