Question

(x,y)=ln (x^2+16)+y. Px=$4 Py= 8 m=$64 a.find the optimal bundle b. find good y income elasticity...

(x,y)=ln (x^2+16)+y. Px=$4 Py= 8 m=$64
a.find the optimal bundle
b. find good y income elasticity when income rises to $96

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(x,y)=ln (x^2+16)+y. Px=$4 Py= 8 m=$64 a.find the optimal bundle b. find good y income elasticity...
(x,y)=ln (x^2+16)+y. Px=$4 Py= 8 m=$64 a.find the optimal bundle b. find good y income elasticity when income rises to $96
Suppose the demand for good x is ln Qxd =21−0.8 ln Px −1.6 ln Py +6.2...
Suppose the demand for good x is ln Qxd =21−0.8 ln Px −1.6 ln Py +6.2 ln M+0.4 ln Ax.Then what can we say about goods x and y in terms of whether they are substitutes or complements?
Assume that Sam has following utility function: U(x,y) = 2√x+y MRS=(x)^-1/2, px = 1/5, py =...
Assume that Sam has following utility function: U(x,y) = 2√x+y MRS=(x)^-1/2, px = 1/5, py = 1 and her income I = 10. price increase for the good x from px = 1/5 to p0x = 1/2. (a) Consider a price increase for the good x from px = 1/5 to p0x = 1/2. Find new optimal bundle under new price using a graph that shows the change in budget set and the change in optimal bundle when the price...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x^1/4 y^3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. Her optimal consumption bundle is: __________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is: ____________ (write in the form of (x,y) with no space) Her Equivalent Variation is: $ ____________
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. a) Her optimal consumption bundle is:________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same b) Her new optimal consumption bundle is:_______  (write in the form of (x,y) with no space) c) Her Equivalent Variation is: $________
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and...
Emily's preferences can be represented by u(x,y)=x1/4 y3/4 . Emily faces prices (px,py) = (2,1) and her income is $120. Her optimal consumption bundle is: _______ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is:_______  (write in the form of (x,y) with no space) Her Equivalent Variation is: $__________
The demand for good X is given by QXd = 6,000 - (1/2)PX - PY +...
The demand for good X is given by QXd = 6,000 - (1/2)PX - PY + 9PZ + (1/10)M Research shows that the prices of related goods are given by Py = $6,500 and Pz = $100, while the average income of individuals consuming this product is M = $70,000. a. Indicate whether goods Y and Z are substitutes or complements for good X.
Emily's preferences can be represented by u(x,y) = x1/2 y1/2 . Emily faces prices (px,py) =...
Emily's preferences can be represented by u(x,y) = x1/2 y1/2 . Emily faces prices (px,py) = (2,1) and her income is $60. (some formulas in chapter 5 might help) Her optimal consumption bundle is: ______________ (write in the form of (x,y) with no space) Now the price of x increases to $3 while price of y remains the same Her new optimal consumption bundle is: ______________  (write in the form of (x,y) with no space) Her Equivalent Variation is: $_______________ Her...
U(X,Y) = 5X1/3Y2/3 PX =1->2 PY = 3 I = 120 (a) (30 marks) Find demand...
U(X,Y) = 5X1/3Y2/3 PX =1->2 PY = 3 I = 120 (a) Find demand functions X* and Y* (b) Find the initial optimum, A. (c) Find the final optimum, C. (d) Find the decomposition bundle, B (e) Fill in the blank X Y Income Effect Substitution Effect Total Effect
Question 6 The demand for good x is given by x ∗ = 60 − 4Px...
Question 6 The demand for good x is given by x ∗ = 60 − 4Px + 2M + Py, where Px is the price of good x, Py is the price of good y, and M is income. Find the own-price elasticity of demand for good x when Px = 20, Py = 20, and M = 100. Is x an ordinary or giffen good? Explain. Question 7 The demand for good x is given by x ∗ =...