Question

How to derive the equal marginal principle with a general equation and general prices? Good x1,...

How to derive the equal marginal principle with a general equation and general prices? Good x1, x2. Price p1, p2, Income m.

Homework Answers

Answer #1

Let's consider a Cobb-Douglas utility function of following form:

u = x11/2x21/2

Generalized Budget line: M = p1.x1 + p2.x2

Utility is maximized when MU1/MU2 = p1/p2

MU1 = u/x1 = (1/2).(x2/x1)1/2

MU2 = u/x2 = (1/2).(x1/x2)1/2

MU1/MU2 = [(1/2).(x2/x1)1/2] / [(1/2).(x1/x2)1/2] = x2 / x1 = p1 / p2

p1.x1 = p2.x2

Plugging into generalized budget line,

M = p1.x1 + p1.x1 = 2p1.x1

x1 = M / (2p1)

Again,

M = p2.x2 + p2.x2 = 2p2.x2

x2 = M / (2p2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption...
Qin has the utility function U(x1, x2) = x1 + x1x2, where x1 is her consumption of good 1 and x2 is her consumption of good 2. The price of good 1 is p1, the price of good 2 is p2, and her income is M. Setting the marginal rate of substitution equal to the price ratio yields this equation: p1/p2 = (1+x2)/(A+x1) where A is a number. What is A? Suppose p1 = 11, p2 = 3 and M...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal...
The utility function is given by u (x1,x2) = x1^0.5 + x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1,p2,m) and x2(p1, p2,m) by using the method of Lagrange.
Consider utility function u(x1,x2) =1/4x12 +1/9x22. Suppose the prices of good 1 and good 2 are...
Consider utility function u(x1,x2) =1/4x12 +1/9x22. Suppose the prices of good 1 and good 2 are p1 andp2, and income is m. Do bundles (2, 9) and (4, radical54) lie on the same indifference curve? Evaluate the marginal rate of substitution at (x1,x2) = (8, 9). Does this utility function represent convexpreferences? Would bundle (x1,x2) satisfying (1) MU1/MU2 =p1/p2 and (2) p1x1 + p2x2 =m be an optimal choice? (hint: what does an indifference curve look like?)
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate...
The utility function is given by u (x1, x2) = x1^0.5+x2^0.5 1) Find the marginal rate of substitution (MRSx1,x2 ) 2) Derive the demand functions x1(p1, p2, m) and x2(p1,p2, m) by using the method of Lagrange.
Bilbo can consume two goods, good 1 and good 2 where X1 and X2 denote the...
Bilbo can consume two goods, good 1 and good 2 where X1 and X2 denote the quantity consumed of each good. These goods sell at prices P1 and P2, respectively. Bilbo’s preferences are represented by the following utility function: U(X1, X2) = 3x1X2. Bilbo has an income of m. a) Derive Bilbo’s Marshallian demand functions for the two goods. b) Given your answer in a), are the two goods normal goods? Explain why and show this mathematically. c) Calculate Bilbo’s...
4. Suppose a consumer has perfect substitutes preference such that good x1 is twice as valuable...
4. Suppose a consumer has perfect substitutes preference such that good x1 is twice as valuable as to the consumer as good x2. (a) Find a utility function that represents this consumer’s preference. (b) Does this consumer’s preference satisfy the convexity and the strong convex- ity? (c) The initial prices of x1 and x2 are given as (p1, p2) = (1, 1), and the consumer’s income is m > 0. The prices are changed, and the new prices are (p1,p2)...
How do you solve a utility problem that yields demand function for good x and good...
How do you solve a utility problem that yields demand function for good x and good y we have three goods,x1,X2,x3 income ,M and prices ,P1,p2,p3 and utility function U=U(X1,X2,x3)=3logX2+3logX2+2logx3
A consumer’s preferences over two goods (x1,x2) are represented by the utility function ux1,x2=5x1+2x2. The income...
A consumer’s preferences over two goods (x1,x2) are represented by the utility function ux1,x2=5x1+2x2. The income he allocates for the consumption of these two goods is m. The prices of the two goods are p1 and p2, respectively. Determine the monotonicity and convexity of these preferences and briefly define what they mean. Interpret the marginal rate of substitution (MRS(x1,x2)) between the two goods for this consumer.   For any p1, p2, and m, calculate the Marshallian demand functions of x1 and...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A consumer has the utility function U(x1, x2) = min{2x1, 5x2}, where “min” is the minimum function, and x1 and x2 are the amounts she consumes of Good 1 and Good 2. Her income is M > 0. (a) What condition must be true of x1 and x2, in any utility-maximising bundle the consumer chooses? Your answer should be an equation involving (at least) these...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A...
There are two goods, Good 1 and Good 2, with positive prices p1 and p2. A consumer has the utility function U(x1, x2) = min{2x1, 5x2}, where “min” is the minimum function, and x1 and x2 are the amounts she consumes of Good 1 and Good 2. Her income is M > 0. (a) What condition must be true of x1 and x2, in any utility-maximising bundle the consumer chooses? Your answer should be an equation involving (at least) these...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT