Question

Assume that an economy described by the Solow model has the production function Y = K...

Assume that an economy described by the Solow model has the production function Y = K 0.4 ( L E ) 0.6, where all the variables are defined as in class. The saving rate is 30%, the capital depreciation rate is 3%, the population growth rate is 2%, and the rate of change in labor effectiveness (E) is 1%.

  1. For this country, what is f(k)? How did you define lower case k?
  2. Write down the equation of motion for k.
  3. Solve for the steady state level of capital, k*.
  4. What is the growth of rate of k* and y* in the steady state?
  5. Calculate the growth rate of GDP per capita and aggregate GDP in the steady state. Show all your calculations.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4...
Assume that an economy is described by the Solow growth model as below: Production Function: y=50K^0.4 (LE)^0.6 Depreciation rate: S Population growth rate: n Technological growth rate:g Savings rate: s a. What is the per effective worker production function? b. Show that the per effective worker production function derived in part a above exhibits diminishing marginal returns in capital per effective worker C.Solve for the steady state output per effective worker as a function of s,n,g, and S d. A...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that...
Consider an economy described by the production function: Y = F(K, L) = K0.3L0.7. Assume that the depreciation rate is 5 percent per year. Make a table showing steady-state capital per worker, output per worker, and consumption per worker for saving rates of 0 percent, 10 percent, 20 percent, 30 percent, and so on. Round your answers to two decimal places. (You might find it easiest to use a computer spreadsheet then transfer your answers to this table.) Steady State...
A country is described by the Solow model with a production function of y=k^(1/2). Suppose that...
A country is described by the Solow model with a production function of y=k^(1/2). Suppose that k is equal to 400. The fraction of output invested is 50%. The depreciation rate is 5%. a. How does k change at this level? b. What is the steady state level of k? c. Suppose the level of k is 900. How does this change affect the rate of change of k to the steady state?
1. If the technology (production function) and all the Solow model parameters are same for two...
1. If the technology (production function) and all the Solow model parameters are same for two economies, they will eventually converge to the same steady state levels of per-capita capital even if they start at different levels of initial k. True False 2. If the technology (production function) and all the Solow model parameters are same for two economies, more time taken will be needed to reach steady state for the economy with high initial level of per-capita capital? True...
Consider an economy characterized by the production y = k^1/2, a saving rate equal to s...
Consider an economy characterized by the production y = k^1/2, a saving rate equal to s = 0.3, a population growth of n = 0.2 and a depreciation rate of capital of σ = 0.05. a. Calculate the steady state values of capital per capita, GDP per capita and consumption per capita. Show the result on the appropriate graph. b. Is the above steady state Dynamic Efficient or Inefficient? Why? c. What saving rate would ensure a steady state level...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves...
17. Solow growth The production function in your country is: Y = K^0.5(LE)^0.5. Your economy saves 24% of output each period, and 5% of the capital stock depreciates each period. The population grows 2% annually. Technology grows 1% annually. You begin with 1000 workers and 1 unit of capital, and a tech- nology level equal to 1. a) Write the production function in per-eective-worker terms, so that per-effective-worker output (y = Y/LE ) is a function of per-effective-worker capital (k=...
1. In the Solow model without exogenous technological change, per capita income will grow in the...
1. In the Solow model without exogenous technological change, per capita income will grow in the long term as long as the country has an initial level of capital below the steady state level of capital (k o < k ⋅) TRUE OR FALSE? 2. In the Solow model without exogenous technological change, per capita income will grow in the short term as long as the country has an initial level of capital below the steady state level of capital...
2. Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and...
2. Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people consume after saving a proportion of income, C=(1-s)Y. The capital per worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k. (a) Describe the steady state k* as a function of other variables (b) Suppose that there are two countries with the same steady state capital per worker k* and zero growth rate of population(n=0), but differ by saving rate, s and depreciation rate, d. So we assume...
Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people...
Consider a numerical example using the Solow growth model: The production technology is Y=F(K,N)=K0.5N0.5 and people consume after saving a proportion of income, C=(1-s)Y. The capital per worker, k=K/N, evolves by (1+n)k’=szf(k)+(1-d)k. (a) Describe the steady state k* as a function of other variables. (b) Suppose that there are two countries with the same steady state capital per worker k* and zero growth rate of population(n=0), but differ by saving rate, s and depreciation rate, d. So we assume that...
Consider an economy that is characterized by the Solow Model. The (aggregate) production function is given...
Consider an economy that is characterized by the Solow Model. The (aggregate) production function is given by: Y = 1.6K1/2L1/2 In this economy, workers consume 75% of income and save the rest.  The labour force is growing at 3% per year while the annual rate of capital depreciation is 5%. Initially, the economy is endowed with 4500 units of capital and 200 workers. Is the economy in its steady state?  Yes/no, explain.  If the economy is not in its steady state, explain what...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT