Question

In each part below, give a formal proof that the sentence given is valid or else...

In each part below, give a formal proof that the sentence given is valid or else provided an interpretation in which the sentence is false.

(a) [∀xA(x) ∨ ∀xB(x)] → ∀x[A(x) ∨ B(x)].

(b) [∃xA(x) ∧ ∃xB(x)] → ∃x[A(x) ∧ B(x)].

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In each part below, give a formal proof that the sentence given is valid or else...
In each part below, give a formal proof that the sentence given is valid or else provided an interpretation in which the sentence is false. (a) ∀xA(x) → ∃x[B(x) → A(x)]. (b) ∃x[B(x) → A(x)] → ∃xA(x).
Please explained using formal proofs in predicate logic In each part below, give a formal proof...
Please explained using formal proofs in predicate logic In each part below, give a formal proof that the sentence given is valid or else provided an interpretation in which the sentence is false. (a) ∀xP' (x) → ∃x[P(x) → Q' (x)]. (b) ∃x[P(x) → Q' (x)] → QxP' (x).
Please explained using the inference rules and also show all steps. In each part below, give...
Please explained using the inference rules and also show all steps. In each part below, give a formal proof that the sentence given is valid or else provided an interpretation in which the sentence is false. (a) ∀xP' (x) → ∃x[P(x) → Q'(x)]. (b) ∃x[P(x) → Q'(x)] → ∃xP' (x).
Please explained using the inference rules and also show all steps. In each part below, give...
Please explained using the inference rules and also show all steps. In each part below, give a formal proof that the sentence given is valid or else provided an interpretation in which the sentence is false. (a) ∀xP' (x) → ∃x[P(x) → Q'(x)]. (b) ∃x[P(x) → Q'(x)] → ∃xP' (x).
3. Transform each informal argument into a formalized wff. Then give a formal proof of the...
3. Transform each informal argument into a formalized wff. Then give a formal proof of the wff. (a) Every student likes cake and likes ice cream. Fred is a student. Therefore, some student likes cake and likes ice cream. (b) Every even number is divisible by 2. There is an even number. Therefore, there is a number which is divisible by 2.
For each part below, give an example of a linear system of three equations in three...
For each part below, give an example of a linear system of three equations in three variables that has the given property. in each case, explain how you got your answer, possibly using sketches. (a) has no solutions (b) has exactly one solution which is (1, 2, 3). (c) any point of the line given parametrically be (x, y, z) = (s − 2, 1 + 2s, s) is a solution and nothing else is. (d) any point of the...
1. For each statement that is true, give a proof and for each false statement, give...
1. For each statement that is true, give a proof and for each false statement, give a counterexample     (a) For all natural numbers n, n2 +n + 17 is prime.     (b) p Þ q and ~ p Þ ~ q are NOT logically equivalent.     (c) For every real number x ³ 1, x2£ x3.     (d) No rational number x satisfies x^4+ 1/x -(x+1)^(1/2)=0.     (e) There do not exist irrational numbers x and y such that...
For each of the following statements: if the statement is true, then give a proof; if...
For each of the following statements: if the statement is true, then give a proof; if the statement is false, then write out the negation and prove that. For all sets A;B and C, if B n A = C n A, then B = C.
For each part below, use a complete sentence to comment on how the value obtained from...
For each part below, use a complete sentence to comment on how the value obtained from the data compares to the theoretical value you expected from the distribution X ~ U(0, 1). For reference, the empirical data is as follows: Mean = .5503 Standard Deviation = .2729, 1st Quartile = .3525 Median = .6106, 3rd Quartile = .7276 minimum value: third quartile: 1st quartile: maximum value: median: width of IQR: overall shape:
For each of the statements below, say what method of proof you should use to prove...
For each of the statements below, say what method of proof you should use to prove them. Then say how the proof starts and how it ends. Pretend bonus points for filling in the middle. a. There are no integers x and y such that x is a prime greater than 5 and x = 6y + 3. b. For all integers n , if n is a multiple of 3, then n can be written as the sum of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT