Question

14. Assume that n is a nonnegative integer . a . Find gcd ( 2n +...


14. Assume that n is a nonnegative integer .
a . Find gcd ( 2n + 1 , n )

Homework Answers

Answer #1

You could use the Eucledean algorithm, where you actually would get the "last line" of the algorithm straight up which shows that the "last nonzero remainder" is 1, so the GCD is 1. For gcd(2n+1,n)

2n+1=2·n+1
n=1·n+0.

Say you would like to find gcd(30,7), according to the algorithm you would write:

30=7·4+2
7=3·2+1
3=3·1+0

In the last row the remaider is 0
so the last nonzero remainder is 1 therefore gcd(30,7)=1

Say you would like to find gcd(40,12)

then you would write

40=3·12+4
12=3·4+0

The last nonzero remainder is 4
therefore gcd(40,12)=4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2....
(a) Let N be an even integer, prove that GCD (N + 2, N) = 2. (b) What’s the GCD (N + 2, N) if N is an odd integer?
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1...
Prove using mathematical induction that 20 + 21 + ... + 2n = 2n+1 - 1 whenever n is a nonnegative integer.
Assume that gcd(a, m) = 1, gcd(a, n) = 1, and gcd(m, n) = 1. Assume...
Assume that gcd(a, m) = 1, gcd(a, n) = 1, and gcd(m, n) = 1. Assume that a has order s modulo m and order t modulo n. What is the order of a modulo mn? Prove that your answer is correct
let's fix a positive integer n. for a nonnegative integer k, let ak be the number...
let's fix a positive integer n. for a nonnegative integer k, let ak be the number of ways to distribute k indistinguishable balls into n distinguishable bins so that an even number of balls are placed in each bin (allowing empty bins). The generating function for sequence ak is given as 1/F(x). Find F(x).
Prove that 2n < n! for every integer n ≥ 4.
Prove that 2n < n! for every integer n ≥ 4.
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Prove that for each positive integer n, (n+1)(n+2)...(2n) is divisible by 2^n
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Let n be a positive odd integer, prove gcd(3n, 3n+16) = 1.
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n +...
Prove the following statement by mathematical induction. For every integer n ≥ 0, 2n <(n + 2)! Proof (by mathematical induction): Let P(n) be the inequality 2n < (n + 2)!. We will show that P(n) is true for every integer n ≥ 0. Show that P(0) is true: Before simplifying, the left-hand side of P(0) is _______ and the right-hand side is ______ . The fact that the statement is true can be deduced from that fact that 20...
For any odd integer n, show that 3 divides 2n+1. That is 2 to the nth...
For any odd integer n, show that 3 divides 2n+1. That is 2 to the nth power, not 2 times n
Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1)...
Used induction to proof that 1 + 2 + 3 + ... + 2n = n(2n+1) when n is a positive integer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT