Question

Let δ ≥ 2. Prove that every simple graph G satisfying δmin(G) ≥ δ and containing...

Let δ ≥ 2. Prove that every simple graph G satisfying δmin(G) ≥ δ and
containing no triangles contains a cycle of length at least 2δ.
Prove that this result is sharp by showing that we cannot guarantee the existence of
a cycle of length at least 2δ + 1. Give a counterexample for each δ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
graph theory Prove that a graph of minimum degree at least k ≥ 2 containing no...
graph theory Prove that a graph of minimum degree at least k ≥ 2 containing no triangles contains a cycle of length at least 2k.
Let G be a connected simple graph with n vertices and m edges. Prove that G...
Let G be a connected simple graph with n vertices and m edges. Prove that G contains at least m−n+ 1 different subgraphs which are polygons (=circuits). Note: Different polygons can have edges in common. For instance, a square with a diagonal edge has three different polygons (the square and two different triangles) even though every pair of polygons have at least one edge in common.
Let G be a simple graph with n(G) > 2. Prove that G is 2-connected iff...
Let G be a simple graph with n(G) > 2. Prove that G is 2-connected iff for every set of 3 distinct vertices, a, b and c, there is an a,c-path that contains b.
Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n-1)/2. Prove that...
Let G be an n-vertex graph with n ≥ 2 and δ(G) ≥ (n-1)/2. Prove that G is connected and that the diameter of G is at most two.
Let G be a simple graph with at least two vertices. Prove that there are two...
Let G be a simple graph with at least two vertices. Prove that there are two distinct vertices x, y of G such that deg(x)= deg(y).
Let G be a graph or order n with independence number α(G) = 2. (a) Prove...
Let G be a graph or order n with independence number α(G) = 2. (a) Prove that if G is disconnected, then G contains K⌈ n/2 ⌉ as a subgraph. (b) Prove that if G is connected, then G contains a path (u, v, w) such that uw /∈ E(G) and every vertex in G − {u, v, w} is adjacent to either u or w (or both).
Let G be a simple graph in which all vertices have degree four. Prove that it...
Let G be a simple graph in which all vertices have degree four. Prove that it is possible to color the edges of G orange or blue so that each vertex is adjacent to two orange edges and two blue edges. Hint: The graph G has a closed Eulerian walk. Walk along it and color the edges alternately orange and blue.
I.15: If G is a simple graph with at least two vertices, prove that G has...
I.15: If G is a simple graph with at least two vertices, prove that G has two vertices of the same degree.    Hint: Let G have n vertices. What are possible different degree values? Different values if G is connected?
Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices...
Graph Theory Prove that if G is a graph with x(G-v-w)=x(G)-2 for every pair of vertices v and w in G, then G is complete. Hint: assume G is not complete.
Let G be a simple planar graph with fewer than 12 vertices. a) Prove that m...
Let G be a simple planar graph with fewer than 12 vertices. a) Prove that m <=3n-6; b) Prove that G has a vertex of degree <=4. Solution: (a) simple --> bdy >=3. So 3m - 3n + 6 = 3f <= sum(bdy) = 2m --> m - 3n + 6 <=0 --> m <= 3n - 6. So for part a, how to get bdy >=3 and 2m? I need a detailed explanation b) Assume all deg >= 5...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT