Question

Determine if the system ?[?]=sin⁡(0.2?∙?[?])is (1) linear, (2) time-invariant.

Determine if the system ?[?]=sin⁡(0.2?∙?[?])is (1) linear, (2) time-invariant.

Homework Answers

Answer #1

Given system

?[?]=sin⁡(0.2?∙?[?])

1) Linear

For input x1[n] output is  

For input x2[n] output is

For input x1[n] + x2[n] , output is   

So system is non-linear.

2) Time - variant

for delay in input for no output will be  

for delay in output by no input will be  

Both are equal, so the system is time invariant system.

Hope you got the answer. If you still have any doubts regarding this, please try to comment.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
subject-DSP 1)y(n)=2x^2(n-1) determine the system is(and justify your decision) a)linear b)time invariant c)stable d)causal
subject-DSP 1)y(n)=2x^2(n-1) determine the system is(and justify your decision) a)linear b)time invariant c)stable d)causal
the system y(t)=t^2*x(2t) linear and time invariant ? justify your answer
the system y(t)=t^2*x(2t) linear and time invariant ? justify your answer
A discrete time system can be i. Linear or non-linear ii. Time invariant or Time Variant...
A discrete time system can be i. Linear or non-linear ii. Time invariant or Time Variant iii. Causal or noncausal iv. Stable or unstable v. Static Vs Dynamic Examine the following systems with respect to every property mentioned above and give a brief explanation. a. y[n] = x[n]δ[n − 1] b. y[n] = x[n] + nu[n + 1] c. y(n) = x(2. n) d. y(n) = 3. x(n)
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?]...
A linear time invariant system has an impulse response given by ℎ[?] = 2(−0.5) ? ?[?] − 3(0.5) 2? ?[?] where u[n] is the unit step function. a) Find the z-domain transfer function ?(?). b) Draw pole-zero plot of the system and indicate the region of convergence. c) Is the system stable? Explain. d) Is the system causal? Explain. e) Find the unit step response ?[?] of the system, that is, the response to the unit step input. f) Provide...
1. Give three linear systems and three non-linear system, and specify whether one is time variant...
1. Give three linear systems and three non-linear system, and specify whether one is time variant or time invariant.
Demonstrate step by step if the following system is: 1. Static or dynamic. 2. Linear or...
Demonstrate step by step if the following system is: 1. Static or dynamic. 2. Linear or non-linear. 3. Invariant or variant in time. 4. Causal or not causal. 5. Stable or unstable. y(n)=x(n)+nx(n-2)
2. Consider the following impulse responses h[n] of linear time-invariant (LTI) systems. In each case, (i)...
2. Consider the following impulse responses h[n] of linear time-invariant (LTI) systems. In each case, (i) provide the transfer function H(z) (ZT of h[n]) and its ROCh, (ii) sketch the ROCh in the z-plane, (iii) mark the pole and zero locations of H(z) (on the same plot in the z-plane), and (iv) discuss whether or not the LTI system is stable. (a) h1[n] = (0.4)^n u[n] + (2 - 3j)^n u(n -2) (b) h2[n] = (0.2)^(n+2) u[n] + (2 -...
Are downsampling and upsampling Linear Time Invariant (LTI) systems in Digital Signal Pocessing
Are downsampling and upsampling Linear Time Invariant (LTI) systems in Digital Signal Pocessing
Which of the following systems are dynamical? Stable? Causal? Time-invariant? Linear? 1. y(t) = 5x(t) 2....
Which of the following systems are dynamical? Stable? Causal? Time-invariant? Linear? 1. y(t) = 5x(t) 2. y(t) = x(t)^4 3. y(t) = x(t−1)^2 4. dy/dt = x(t) 5. dy/dt = y(t) + x(t) 6. dy/dt = −y(t) + x(t)^2 7. dy/dt = −y(t) + x(t + 4) 8. dy/dt = tx(t)
QUESTION 1 (a) Explain the significant of causal system compare to non-causal system. (b) Consider a...
QUESTION 1 (a) Explain the significant of causal system compare to non-causal system. (b) Consider a system ?(?)=4??(?)+4?(?−1). Determine the system properties in term of: (i) Linear. (ii) Time-Invariant.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT