Question

Please show all work if needed. 1.Let E be a set with |E| = 3. What...

Please show all work if needed.

1.Let E be a set with |E| = 3. What is the cardinality of its power set? That is, find |P(E)|.

QUESTION 2

  1. Find 15 modulo 6

  2. Find the quoitent q and the remainder r when -25 is divided by 9.

  3. Find |_-278.48_|.

  4. Let A and B be sets with A ={1,2,3,7} and B = {a,q,x} with

    f: A -> B, with

    f(1)=q, f(2) =a , f(3) =q, f(7) =x.

    Is f 1-1?

  5. Let A and B be sets with A ={1,2,3,7} and B = {a,q,x} with

    f: A -> B, with

    f(1)=q, f(2) =a , f(3) =q, f(7) =x.

    Is f onto? Answer yes or no but justify your answer .

Homework Answers

Answer #1

question no 3

Solution

QUESTION 4

Arroy diagram explaination id given because elements are finite and it is easy to understand

If in second set there are 2 arroy for any element than function is many one not one one

Also mathematical defination is given

question 5 defination of onto function with respect to arrow diagram is given followed by question solution

if you are having any doubts please ask i will answer asap

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Answer the following brief question: (1) Given a set X the power set P(X) is ......
Answer the following brief question: (1) Given a set X the power set P(X) is ... (2) Let X, Y be two infinite sets. Suppose there exists an injective map f : X → Y but no surjective map X → Y . What can one say about the cardinalities card(X) and card(Y ) ? (3) How many subsets of cardinality 7 are there in a set of cardinality 10 ? (4) How many functions are there from X =...
Let X be the set {1, 2, 3}. a)For each function f in the set of...
Let X be the set {1, 2, 3}. a)For each function f in the set of functions from X to X, consider the relation that is the symmetric closure of the function f'. Let us call the set of these symmetric closures Y. List at least two elements of Y. b) Suppose R is some partial order on X. What is the smallest possible cardinality R could have? What is the largest?
Let E/F be a field extension, and let α be an element of E that is...
Let E/F be a field extension, and let α be an element of E that is algebraic over F. Let p(x) = irr(α, F) and n = deg p(x). (a) For f(x) ∈ F[x], let r(x) (∈ F[x]) be the remainder of f(x) when divided by p(x). Prove that f(x) +p(x)= r(x)+p(x)in F[x]/p(x). (b) Prove that if |F| < ∞, then | F[x]/p(x)| = |F|n. (For a set A, we denote by |A| the number of elements in A.)
1. Let W be the set of all [x y z}^t in R^3 such that xyz...
1. Let W be the set of all [x y z}^t in R^3 such that xyz = 0. Is W a subspace of R^3? 2. Let C^0 (R) denote the space of all continuous real-valued functions f(x) of x in R. Let W be the set of all continuous functions f(x) such that f(1) = 0. Is W a subspace of C^0(R)?
A subset of a power set. (a) Let X = {a, b, c, d}. What is...
A subset of a power set. (a) Let X = {a, b, c, d}. What is { A: A ∈ P(X) and |A| = 2 }? comment: Please give a clear explanation to what this set builder notation translate to? Because I've checked the answer for a) and it is A= {{a,b}, {a,c}, {a,d}, {b,c}, {b,d}, {c,d}}. I don't understand because the cardinality of A has to be 2 right? Meanwhile, the answer is basically saying there's 6 elements. So...
(a) show that {x, e^x, e^2x} is a linearly independed set. (b) Let A be a...
(a) show that {x, e^x, e^2x} is a linearly independed set. (b) Let A be a 7x7 matrix if r(A)=4. find det(A), explain if det(A)=4, find r(A), explain
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite...
Let F = {A ⊆ Z : |A| < ∞} be the set of all finite sets of integers. Let R be the relation on F defined by A R B if and only if |A| = |B|. (a) Prove or disprove: R is reflexive. (b) Prove or disprove: R is irreflexive. (c) Prove or disprove: R is symmetric. (d) Prove or disprove: R is antisymmetric. (e) Prove or disprove: R is transitive. (f) Is R an equivalence relation? Is...
Let A be the set of all lines in the plane. Let the relation R be...
Let A be the set of all lines in the plane. Let the relation R be defined as: “l​1​ R l​2​ ⬄ l​1​ intersects l​2​.” Determine whether S is reflexive, symmetric, or transitive. If the answer is “yes,” give a justification (full proof is not needed); if the answer is “no” you ​must give a counterexample.
1. Use the roster method to describe the elements of the following set. x∈ℤ||x−3|<12 and x...
1. Use the roster method to describe the elements of the following set. x∈ℤ||x−3|<12 and x is a multiple of 3 2. Use the roster method to describe the elements of the following set. {n∈ℕ∣∣∣1n+6⩾6272 and n is a multiple of 5} 3. Determine the cardinality of the following sets. {x∈ℤ|−4⩽x⩽3}: {x∈ℕ|−4⩽x⩽3}: 4. Evaluate the following expressions. [Hint: start by factoring the polynomial.] ∣∣{x∈ℚ∣∣18x3+69x2+56x=0}∣∣= ∣∣{x∈(0,∞)∣∣18x3+69x2+56x=0}∣∣= ∣∣{x∈ℤ∣∣18x3+69x2+56x=0}∣∣= 5.  Evaluate the following expressions. [Hint: start by factoring the polynomial.] ∣∣{x∈ℝ∣∣x4+11x2+28=0}∣∣= ∣∣{x∈ℚ∣∣x4+11x2+28=0}∣∣= ∣∣{x∈ℕ∣∣x4+11x2+28=0}∣∣= 6....
Let S = {A, B, C, D, E, F, G, H, I, J} be the set...
Let S = {A, B, C, D, E, F, G, H, I, J} be the set consisting of the following elements: A = N, B = 2N , C = 2P(N) , D = [0, 1), E = ∅, F = Z × Z, G = {x ∈ N|x 2 + x < 2}, H = { 2 n 3 k |n, k ∈ N}, I = R \ Q, J = R. Consider the relation ∼ on S given...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT