Question

Let's say we have the following relation defined on the set {0, 1, 2, 3}: {...

Let's say we have the following relation defined on the set {0, 1, 2, 3}:

{ (0, 0), (0, 2), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3) }

- Please answer the following 3 questions about this relation. (The relation will be repeated for each question.) Is this relation a function? Why or why not?

- What are the three properties that must be present in an equivalence relation? Please give the names of the three properties and their definitions.

- Is this relation an equivalence relation? Please examine this relation for all three properties and explain, for each one, why this relation either has, or does not have, the given property.

Homework Answers

Answer #1

For first one not a Function

For second one 1)reflexive 2)symmetric 3)transitive

For third one reflexive not holds good

Any queries please comment

Please thumsbup for my effort

Thank you and all the best

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Suppose we have the following relation defined on Z. We say that a ∼ b...
1. Suppose we have the following relation defined on Z. We say that a ∼ b iff 2 divides a + b. (a) Prove that the relation ∼ defines an equivalence relation on Z. (b) Describe the equivalence classes under ∼ . 2. Suppose we have the following relation defined on Z. We say that a ' b iff 3 divides a + b. It is simple to show that that the relation ' is symmetric, so we will leave...
For each of the following, prove that the relation is an equivalence relation. Then give the...
For each of the following, prove that the relation is an equivalence relation. Then give the information about the equivalence classes, as specified. a) The relation ∼ on R defined by x ∼ y iff x = y or xy = 2. Explicitly find the equivalence classes [2], [3], [−4/5 ], and [0] b) The relation ∼ on R+ × R+ defined by (x, y) ∼ (u, v) iff x2v = u2y. Explicitly find the equivalence classes [(5, 2)] and...
2.For each of the following, give a concrete example. Explain in max. 3 lines why your...
2.For each of the following, give a concrete example. Explain in max. 3 lines why your example has the stated property. (c) An equivalence relation on N that has exactly three equivalence classes. (d) An ordering relation on the set {a, b, c, d} that does not have a maximum element. 1. [10 points] For each of the following statements, indicate whether it is true or false. You don’t have to justify your answers. (i) If R is an equivalence...
Let A = {−5, −4, −3, −2, −1, 0, 1, 2, 3} and define a relation...
Let A = {−5, −4, −3, −2, −1, 0, 1, 2, 3} and define a relation R on A as follows: For all (m, n) is in A, m R n ⇔ 5|(m2 − n2). It is a fact that R is an equivalence relation on A. Use set-roster notation to list the distinct equivalence classes of R. (Enter your answer as a comma-separated list of sets.) ____________
Let A = {1, 2, 3, 4, 5}. Describe an equivalence relation R on the set...
Let A = {1, 2, 3, 4, 5}. Describe an equivalence relation R on the set A that produces the following partition (has the sets of the partition as its equivalence classes): A1 = {1, 4}, A2 = {2, 5}, A3 = {3} You are free to describe R as a set, as a directed graph, or as a zero-one matrix.
Halla Enterprises is considering the following three investments: Let's say the appropriate discount rate for the...
Halla Enterprises is considering the following three investments: Let's say the appropriate discount rate for the investment is 15%. Year Cash Flow 0 -6,000 -10,000 -4,000 1 3,000 2,000 1,000 2 3,000 4,000 4,000 3 3,000 8,000 6,000 4 3,000 6,000 0 5 3,000 1,000 0 1. Calculate the net present value of each investment. 2. What is the internal return on each investment? 3. Which investment plan do you think is the most economical? Explain its validity.
Problem 3 For two relations R1 and R2 on a set A, we define the composition...
Problem 3 For two relations R1 and R2 on a set A, we define the composition of R2 after R1 as R2°R1 = { (x, z) ∈ A×A | (∃ y)( (x, y) ∈ R1 ∧ (y, z) ∈ R2 )} Recall that the inverse of a relation R, denoted R -1, on a set A is defined as: R -1 = { (x, y) ∈ A×A | (y, x) ∈ R)} Suppose R = { (1, 1), (1, 2),...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove...
For Problems #5 – #9, you willl either be asked to prove a statement or disprove a statement, or decide if a statement is true or false, then prove or disprove the statement. Prove statements using only the definitions. DO NOT use any set identities or any prior results whatsoever. Disprove false statements by giving counterexample and explaining precisely why your counterexample disproves the claim. ********************************************************************************************************* (5) (12pts) Consider the < relation defined on R as usual, where x <...
Let X be the set {1, 2, 3}. a)For each function f in the set of...
Let X be the set {1, 2, 3}. a)For each function f in the set of functions from X to X, consider the relation that is the symmetric closure of the function f'. Let us call the set of these symmetric closures Y. List at least two elements of Y. b) Suppose R is some partial order on X. What is the smallest possible cardinality R could have? What is the largest?
Consider the set Q(√3) ={a+b√3| a,b∈Q}. We have the associative properties of usual addition and usual...
Consider the set Q(√3) ={a+b√3| a,b∈Q}. We have the associative properties of usual addition and usual multiplication from the field of real number R. a)Show that Q (√3) is closed under addition, contains the additive identity (0,zero) of R, each element contains the additive inverses, and say if addition is commutative. What does this tell you about (Q(√3,+)? b) Prove that Q(√3) is a commutative ring with unity 1 c) Prove that Q(√3) is a field by showing every nonzero...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT