Question

Design a recursive algorithm to compute 3^n based on the formula 3^n=3^(n−1) + 3^(n−1) + 3^(n−1)....

Design a recursive algorithm to compute 3^n based on the formula 3^n=3^(n−1) + 3^(n−1) + 3^(n−1). Also do the recurrence relation.

Homework Answers

Answer #1

Now using back tracking process of recursion to find the value of 3^4

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a. Design a non-recursive algorithm for computing an (discussed in the class). What is the basic...
a. Design a non-recursive algorithm for computing an (discussed in the class). What is the basic operation? How many times is the algorithm’s basic operation executed? b. Using an = a*an-1 (discussed in the class) to design a recursive algorithm for computing an . What is the basic operation? Set up and solve a recurrence relation for the number of times that algorithm's basic operation is executed. c. Using an = a*(a(n-1)/2) 2 (n is odd integer) and an =...
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n...
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n 1)What does this algorithm compute? 2) Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed. 3) How does this algorithm compare with the non-recusive algorithm for computing thius function in terms of time efficeincy and space effeciency?
Consider the following recursive algorithm. Algorithm Test (T[0..n − 1]) //Input: An array T[0..n − 1]...
Consider the following recursive algorithm. Algorithm Test (T[0..n − 1]) //Input: An array T[0..n − 1] of real numbers if n = 1 return T[0] else temp ← Test (T[0..n − 2]) if temp ≥ T[n − 1] return temp else return T[n − 1] a. What does this algorithm compute? b. Set up a recurrence relation for the algorithm’s basic operation count and solve it.
1.        A. Write a recursive brute force algorithm that calculates an. B. Write the java code...
1.        A. Write a recursive brute force algorithm that calculates an. B. Write the java code that does the calculation. C. What is the recurrence relation for the number of multiplications? D. What is the efficiency class of the algorithm?
Use a recurrence relation to approximate the number of comparisons done by the recursive FindMax function(Algorithm...
Use a recurrence relation to approximate the number of comparisons done by the recursive FindMax function(Algorithm 5.10)
Looking at the recursive formula we can design a simple program use pseudocode. Fibonacci(n): if (n...
Looking at the recursive formula we can design a simple program use pseudocode. Fibonacci(n): if (n == 0) return 0; if (n == 1) return 1; return Fibonacci (n-1) + Fibonacci(n-2). Discuss any issues you find with your program and what reasoning there may be.
Consider the following recursive equation s(2n) = 2s(n) + 3; where n = 1, 2, 4,...
Consider the following recursive equation s(2n) = 2s(n) + 3; where n = 1, 2, 4, 8, 16, ... s(1) = 1 a. Calculate recursively s(8) b. Find an explicit formula for s(n) c. Use the formula of part b to calculate s(1), s(2), s(4), and s(8) d Use the formula of part b to prove the recurrence equation s(2n) = 2s(n) + 3
Use a recursive tree method to compute a tight asymptotic upper bound for recurrence function T(n)=...
Use a recursive tree method to compute a tight asymptotic upper bound for recurrence function T(n)= 3T(n/4)+n . then use substitution method to verify your answer.
Consider the following recursive algorithm for computing the sum of the first ? cubes: ? (?)...
Consider the following recursive algorithm for computing the sum of the first ? cubes: ? (?) = 13 + 23 + ⋯+ ? 3 . Algorithm S(n) //Input: A positive integer n //Output: The sum of the first n cubes if n = 1 return 1 else return S(n-1) + n * n * n
Consider below recurrence relation f_(n )=f_(n-1)+ f_(n-2) for n ≥ 3. f_(1 )=1 and f_2 =...
Consider below recurrence relation f_(n )=f_(n-1)+ f_(n-2) for n ≥ 3. f_(1 )=1 and f_2 = 3 (a) Please compute the first seven numbers in this sequence. (b) Find the closed form for this recurrence relation. Solving the characteristic equation, and solving for constants