For IEEE 754 single-precision floating point, write the hexadecimal representation for the following decimal values:
0.6
0 =0
0.6 =0.1001 1001 1001 1001 1001 1001
Normalize the binary representation
1.0011 0011 0011 0011 0011 001 × 2-1
Sign: 0 (a positive number)
Exponent (unadjusted): -1
Mantissa (not normalized): 1.0011 0011 0011 0011 0011 001
Exponent (adjusted) =Exponent (unadjusted) + 2(8-1) - 1 =-1 + 2(8-1) - 1 =(-1 + 127)(10) =126 = 0111 1110
Sign (1 bit) =
0 (a positive number)
Exponent (8 bits) =
0111 1110
Mantissa (23 bits) =
001 1001 1001 1001 1001 1001
0 - 0111 1110 - 001 1001 1001 1001 1001 1001
in hexadecimal
0 7E 199999
Get Answers For Free
Most questions answered within 1 hours.