Question

int algorithm ( int n ) {    if (n == 0)           return 1; else...

int algorithm ( int n ) {

   if (n == 0)

          return 1;

else {

return 2 * algorithm(n-1);

   }

}

Homework Answers

Answer #1


#include <iostream>

using namespace std;

// This algorithm is simply calculating the 2^n (2 raise to power n)
int algorithm ( int n ) {
  
// Recursion will stop when n becomes 1
if (n == 0)

return 1;

else {
  
// 2 will be mulitplied with result in each call and value of n wil be decremented by 1
return 2 * algorithm(n-1);
  
}

}
int main()
{   
int n;
  
// Input of n
cout<<"Enter the value of n: ";
cin>>n;
  
cout<<" Algorithm will result "<<algorithm(n);

return 0;
}

OUTPUT:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given the following function: int bar(int n) {     if( n < 0 )         return...
Given the following function: int bar(int n) {     if( n < 0 )         return -2;     else if (n <= 1)         return 2;     else       return (3 + bar(n-1) + bar(n-2)); } What is returned by bar (4)? Show all the steps
Determine the order of complexity for the following algorithm: function(int n) { int l, u, m;...
Determine the order of complexity for the following algorithm: function(int n) { int l, u, m;    l=0; u= n-1;    while (l<u) {        m= (l+u)/2;        if (a[m] < x) l= m+1;        else if (a[m] >x) u=m-1;            else return “found”    }    return (“not found”); }
static int F(int n) { if (n < 1) return 1; else return 2*F(n-1)+n; } (a)...
static int F(int n) { if (n < 1) return 1; else return 2*F(n-1)+n; } (a) [7 points] Give the recurrence that describes the running time of F(int n). (b) [8 points] Solve the recurrence equation from (a). Note: For (b), you must show your work
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n...
Consider the following recursive algorithm Algorithm S(n) if n==1 return 1 else return S(n-1) + n*n*n 1)What does this algorithm compute? 2) Set up and solve a recurrence relation for the number of times the algorithm's basic operation is executed. 3) How does this algorithm compare with the non-recusive algorithm for computing thius function in terms of time efficeincy and space effeciency?
Consider the following recursive algorithm. Algorithm Test (T[0..n − 1]) //Input: An array T[0..n − 1]...
Consider the following recursive algorithm. Algorithm Test (T[0..n − 1]) //Input: An array T[0..n − 1] of real numbers if n = 1 return T[0] else temp ← Test (T[0..n − 2]) if temp ≥ T[n − 1] return temp else return T[n − 1] a. What does this algorithm compute? b. Set up a recurrence relation for the algorithm’s basic operation count and solve it.
Consider the following two methods: public static boolean isTrue(int n){        if(n%2 == 0)          ...
Consider the following two methods: public static boolean isTrue(int n){        if(n%2 == 0)           return true;        else           return false; } public static int Method(int[] numbers, int startIndex) { if(startIndex >= numbers.length)        return 0; if (isTrue(numbers[startIndex]))      return 1 + Method(numbers, startIndex + 1); else      return Method(numbers, startIndex + 1); } What is the final return value of Method() if it is called with the following parameters: numbers = {1, 2, 2, 3, 3,...
1. public int add100(int[] array) { if (array.length < 100) { return 0; } int sum...
1. public int add100(int[] array) { if (array.length < 100) { return 0; } int sum = 0; for (int i = 0; i < 100; i++) { sum += array[i]; } return sum; } 2. int sum = 0; for (int i = 1; i <= n; i++) { for (int j = 0; j <= i; j++) { sum++; sum++; } } for (int i = 0; i < n; i += 2) { sum++; } 3. nt...
Assume that the functions CS303 and UMKC have been defined as follows: int CS303(int n) {...
Assume that the functions CS303 and UMKC have been defined as follows: int CS303(int n) {      if (n == 0) {            return 1;      } else {            return UMKC(2, CS303(n - 1));      } } int UMKC(int n1, int n2) {      if (n1 == 0) {            return 0;      } else {            return n2 + UMKC(n1 - 1, n2);      } } What is the value of CS303(5)?
Assume that the functions CS303 and UMKC have been defined as follows: int CS303(int n) {...
Assume that the functions CS303 and UMKC have been defined as follows: int CS303(int n) {      if (n == 0) {            return 1;      } else {            return UMKC(2, CS303(n - 1));      } } int UMKC(int n1, int n2) {      if (n1 == 0) {            return 0;      } else {            return n2 + UMKC(n1 - 1, n2);      } } What is the value of CS303(4)?
Draw a program flow graph for the function below int binsearch(int x,int v[],int n) { int...
Draw a program flow graph for the function below int binsearch(int x,int v[],int n) { int low,high,mid; low=0; high=n-1; while(low<high) { mid = ( low + high ) / 2; if( x < v[mid]) high = mid - 1; else if ( x > v[mid]) low = mid + 1; else return mid; } return -1; }
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT