Question

Let G = (V, E) be a tree, and let M be the greatest possible number...

Let G = (V, E) be a tree, and let M be the greatest possible number of vertices in a path that is a subgraph of G. Show that any two paths with M vertices in G must have at least one vertex in common.

Homework Answers

Answer #1

We will prove this by the method of contradiction. Let us assume that there are two paths with M vertices and and no two vertices in and are common, that is, for any i and j in [1,M].

SInce G is a tree, it is connected, there is a path between and for some i and j in [1,M] and shares no vertex with apart from and . Let us assume that . Here, n can be zero too.

Let us assume that i and j are both greater than or equal to M/2. We can assume this, because if it is not true we can reverse the ordering of the path. Then we can have a path . This moves from to along , then, then moves from to along and finally from to along .

is found to have vertices more than . However, this contradicts the fact given about . Hence, and must have at least one common vertex.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A spanning tree of connected graph G = (V, E) is an acyclic connected subgraph (V,...
A spanning tree of connected graph G = (V, E) is an acyclic connected subgraph (V, E0 ) with the same vertices as G. Show that every connected graph G = (V, E) contains a spanning tree. (It is the connected subgraph (V, E0 ) with the smallest number of edges.)
Problem 2. Consider a graph G = (V,E) where |V|=n. 2(a) What is the total number...
Problem 2. Consider a graph G = (V,E) where |V|=n. 2(a) What is the total number of possible paths of length k ≥ 0 in G from a given starting vertex s and ending vertex t? Hint: a path of length k is a sequence of k + 1 vertices without duplicates. 2(b) What is the total number of possible paths of any length in G from a given starting vertex s and ending vertex t? 2(c) What is the...
Let T = (V, E) be a tree, and suppose that some node u ∈ V...
Let T = (V, E) be a tree, and suppose that some node u ∈ V has degree d. Prove that T has at least d leaves. Hint: Consider the induced subgraph with vertex set V \ {u}
Let T = (V, E) be a tree with |V | ≥ 2. Show that T...
Let T = (V, E) be a tree with |V | ≥ 2. Show that T has at least two vertices with degree 1.
Let G = (X, E) be a connected graph. The distance between two vertices x and...
Let G = (X, E) be a connected graph. The distance between two vertices x and y of G is the shortest length of the paths linking x and y. This distance is denoted by d(x, y). We call the center of the graph any vertex x such that the quantity max y∈X d(x, y) is the smallest possible. Show that if G is a tree then G has either one center or two centers which are then neighbors
Let G = (V,E) be a graph with n vertices and e edges. Show that the...
Let G = (V,E) be a graph with n vertices and e edges. Show that the following statements are equivalent: 1. G is a tree 2. G is connected and n = e + 1 3. G has no cycles and n = e + 1 4. If u and v are vertices in G, then there exists a unique path connecting u and v.
Let G be a graph or order n with independence number α(G) = 2. (a) Prove...
Let G be a graph or order n with independence number α(G) = 2. (a) Prove that if G is disconnected, then G contains K⌈ n/2 ⌉ as a subgraph. (b) Prove that if G is connected, then G contains a path (u, v, w) such that uw /∈ E(G) and every vertex in G − {u, v, w} is adjacent to either u or w (or both).
Graph Theory, discrete math question: Let G be a graph with 100 vertices, and chromatic number...
Graph Theory, discrete math question: Let G be a graph with 100 vertices, and chromatic number 99. Prove a lower bound for the clique number of G. Any lower bound will do, but try to make it as large as you can. Please follow this hint my professor gave and show your work, Thank you!! Hint: can you prove that the clique number is at least 1? Now how about 2? Can you prove that the clique number must be...
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0...
You are given a directed acyclic graph G(V,E), where each vertex v that has in-degree 0 has a value value(v) associated with it. For every other vertex u in V, define Pred(u) to be the set of vertices that have incoming edges to u. We now define value(u) = ?v∈P red(u) value(v). Design an O(n + m) time algorithm to compute value(u) for all vertices u where n denotes the number of vertices and m denotes the number of edges...
Let G be a graph on 10 vertices that has no triangles. Show that Gc (G...
Let G be a graph on 10 vertices that has no triangles. Show that Gc (G complement) must have K4 subgraph
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT