Question

**Multiply out to get SOP of 3 terms each of 3 variables.
(B + C’ + D’) (A’ + B + C) (A’ + C’ + D) (A’ + C) (C +
D)**

Answer #1

**Solution for the question is provided below, please
comment if any doubts:**

**The given POS relation is:**

**(B + C’ + D’) (A’ + B + C) (A’ + C’ + D) (A’ + C) (C +
D)**

**Now multiply in,**

**= (A’B+A’C’+A’D’+B+BC’+BD’+CB+CD’) (A’ + C’ +
D)(A’C+C+A’D+CD)**

**=**

**(A’B+A’C’+A’D’+A’B+A’BC’+A’BD’+A’CB+A’CD’+A’BC’+A’C’+A’C’D’+C’B+BC’+C’BD’+
A’BD+A’C’D+BD+BC’D+CDB) (A’C+C+A’D+CD)**

**=**

**A’BC+A’D’C+A’BC+A’BCD’+A’CB+A’CD’+ A’BCD+A’CBD+A’CDB
+**

**+A’BC+A’CD’+A’BC+A’BCD’+A’CB+A’CD’+ A’BD+BD+CDB
+**

**+A’BD+A’C’D+A’BD+A’BC’D+A’CDB+A’BC’D+A’C’D+C’BD+BC’D+A’BD+A’C’D+A’BD+A’BC’D+A’CDB**

**+ A’BCD+A’BCD+A’CBD+ A’BCD+BCD+CDB**

**Now reduce the terms,**

**=**

**A’BC+A’CD’+ A’BCD’+ A’BCD+BD+A’C’D**

**=A’BC+A’CD’+A’BCD’+A’C’D**

**=A’BC+A’CD+A’C’D**

**Thus the SOP term with 3 terms with 3 variables is:
A’BC+A’CD+A’C’D**

Multiply out to get SOP of 3 terms each of 3
variables.
(B + C’ + D’) (A’ + B + C) (A’ + C’ + D) (A’ + C) (C + D)

Problem 1:
Reduce the following expressions to a minimum sum of products
(SOP) form.
Show each step (the number of terms and the number of literals
expected is as shown).
a) h = ab’c + ab’c’ + a’b’c’+ bcd+bc’d (3 terms, 6 literals)
b) f = xy + w’y’z + w’xz’+ w’y (3 terms, 6 literals)
c) g = x’y’ +x yz’ + x’y’z + xyz (2 terms, 4 literals)
d) k = acb’ + a(b+d)’ + d’(b+a)’ (2 terms,...

Write the canonical SOP expression for the function
F(a, b, c, d)=∑m(2, 3, 9, 10, 11, 13) and
then simplify using algebraic manipulation.

Given the SOP function:
f(a,b,c,d) = Σ m ( 1 , 3 , 4 , 5 , 6 , 7 , 10 , 12 , 13 ) + Σ d
( 2 , 9 , 15 )
Use the Quine-McCluskey method to show that the minimum output
function, f, is:
f (a,b,c,d) = b'cd' + bc' + a'd + a'b or f(a,b,c,d) = b'cd' +
bc' + a'd + a'c

(A+ a)(B + b)(C + c)(D + d)(E + e) is multiplied out, how many
terms will have three uppercase letters?

Find the simpliest SOP expression using boolean algebra.
F(A,B,C,D) = A’B’CD + A’BCD’ + A’BCD + AB’C’D’ + AB’C’D +
ABC’D’

Simplify to reach 3 product terms each of 2 variables
only.
X’YZ + XYZ’ + XYZ + XY’Z

Simplify to reach 3 product terms each of 2 variables
only. X’YZ + XYZ’ + XYZ + XY’Z

Develop a program that uses four signed, global, short variables
A, B, C, D Initialize each variable A, B, C, D to a different
positive one-digit value Somehow print the four values in order A B
C D, space separated Print a newline character Reorder the values
in the variables from the order A, B, C, D to B, C, D, A
A -> B
B -> C
C -> D
D -> A
Somehow print the four values in...

how
many sets with 3 numbers in each set can you get out of these
numbers. 6,3,0,1,2,8.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 15 minutes ago

asked 31 minutes ago

asked 31 minutes ago

asked 39 minutes ago

asked 44 minutes ago

asked 50 minutes ago

asked 50 minutes ago

asked 51 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago