Question

prove that the language L = {a^n+1 b^2n(aa)^n b | n > 0} is non-context free....

prove that the language L = {a^n+1 b^2n(aa)^n b | n > 0} is non-context free. Using pumping lemma with length

Homework Answers

Answer #1

If there is anything that you do not understand or need more help then please mention it in the comments section.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
prove that the language L over {c,d,e} is not context free. (using pumping lemma for context...
prove that the language L over {c,d,e} is not context free. (using pumping lemma for context free languages) L= {w ∈ {c,d,e}* : number of c's, number of d's, and number of e's have a common factor greater than 1}
Using the pumping lemma for context free Languages to prove L is not context free. L...
Using the pumping lemma for context free Languages to prove L is not context free. L = { w#w#w | w E (0+1)*} Are the used variables {0,1,#}
Prove the language of strings over {a, b} of the form (b^m)(a^n) , 0 ≤ m...
Prove the language of strings over {a, b} of the form (b^m)(a^n) , 0 ≤ m < n-2 isn’t regular. (I'm using the ^ notation but your free to make yours bman instead of (b^m)(a^n) ) Use the pumping lemma for regular languages.
Use pumping lemma to prove that the language {anb2n| n>0, and w is in {a, b}*...
Use pumping lemma to prove that the language {anb2n| n>0, and w is in {a, b}* } is not a regular language.
Prove the language of strings over {a, b} of the form (b^m)(a^n) , 0 ≤ m...
Prove the language of strings over {a, b} of the form (b^m)(a^n) , 0 ≤ m < n-2 isn’t regular. Use the pumping lemma for regular languages.
Use the pumping lemma for regular languages to prove that the following language is not regular....
Use the pumping lemma for regular languages to prove that the following language is not regular. { 0n1x0x1n | n >= 0 and x >= 0 }
Test the language L2.16={(ab^n,n>0) with the pumping lemma and show that it is regular.
Test the language L2.16={(ab^n,n>0) with the pumping lemma and show that it is regular.
L = { am b n | m < n - 2}. (a) Define the context...
L = { am b n | m < n - 2}. (a) Define the context free grammar G that generates the formal language L. (b) Define the deterministic pushdown automaton A that recognize the formal language L. (c) Implement the pushdown automaton A in your favorite programming language.
L = { am b n | m < n - 2}. (a) Define the context...
L = { am b n | m < n - 2}. (a) Define the context free grammar G that generates the formal language L. (b) Define the deterministic pushdown automaton A that recognize the formal language L. (c) Implement the pushdown automaton A in your favorite programming language.
Are the following languages over {a, b} regular? If they are then prove it. If they...
Are the following languages over {a, b} regular? If they are then prove it. If they are not prove it with the Pumping Lemma {an bm | m != n, n >= 0} {w | w contains the substring ‘aaa’ once and only once } Clear concise details please, if the language is regular, provide a DFA/NFA along with the regular expression. Thank you. Will +1