Question

Prove the following by contraposition: If the product of two integers is not divisible by an...

Prove the following by contraposition:
If the product of two integers is not divisible by an integer n, then neither integer is divisible by n.

(Match the Numbers With the Letter to the right)

1

Contraposition

___

A

x = kn where k is also an integer

2

definition of divisible

___

B

xy is divisible by n

3

by substitution

___

C

xy = (kn)y

4

by associative rule

___

D

If the product of two integers is not divisible by an integer n, then neither integer is divisible by n.

5

by definition of divisible

___

E

xy = (ky)n where ky is an integer

6

Extra match

___

F

If one of two integers is divisible by an integer n, then so is their product.

Homework Answers

Answer #1

MATCH THE FOLLOWING TABLE IS NOT SO CLEAR AS PER UNDERSTANDING I HAVE MATCHED ...CAN U PLEASE POST THE PICTURE SO THAT I WILL UPDATE IT AGAIN IF ANYTHING IS WRONG

PLEASE GIVE AN UPVOTE

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also...
3.a) Let n be an integer. Prove that if n is odd, then (n^2) is also odd. 3.b) Let x and y be integers. Prove that if x is even and y is divisible by 3, then the product xy is divisible by 6. 3.c) Let a and b be real numbers. Prove that if 0 < b < a, then (a^2) − ab > 0.
1. Prove that an integer a is divisible by 5 if and only if a2 is...
1. Prove that an integer a is divisible by 5 if and only if a2 is divisible by 5. 2. Deduce that 98765432 is not a perfect square. Hint: You can use any theorem/proposition or whatever was proved in class. 3. Prove that for all integers n,a,b and c, if n | (a−b) and n | (b−c) then n | (a−c). 4. Prove that for any two consecutive integers, n and n + 1 we have that gcd(n,n + 1)...
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is...
(a) Prove or disprove the statement (where n is an integer): If 3n + 2 is even, then n is even. (b) Prove or disprove the statement: For irrational numbers x and y, the product xy is irrational.
Suppose you have two numbers x, y ∈ Q (that is, x and y are rational...
Suppose you have two numbers x, y ∈ Q (that is, x and y are rational numbers). a) Use the formal definition of a rational number to express each of x and y as the ratio of two integers. Remember, x and y could be different numbers! (b) Use your results from (a) to show that xy must also be a rational number. Carefully justify your answer, showing how it satisfies the formal definition of a rational number. (2) Suppose...
1. Give a direct proof that the product of two odd integers is odd. 2. Give...
1. Give a direct proof that the product of two odd integers is odd. 2. Give an indirect proof that if 2n 3 + 3n + 4 is odd, then n is odd. 3. Give a proof by contradiction that if 2n 3 + 3n + 4 is odd, then n is odd. Hint: Your proofs for problems 2 and 3 should be different even though your proving the same theorem. 4. Give a counter example to the proposition: Every...
You’re the grader. To each “Proof”, assign one of the following grades: • A (correct), if...
You’re the grader. To each “Proof”, assign one of the following grades: • A (correct), if the claim and proof are correct, even if the proof is not the simplest, or the proof you would have given. • C (partially correct), if the claim is correct and the proof is largely a correct claim, but contains one or two incorrect statements or justications. • F (failure), if the claim is incorrect, the main idea of the proof is incorrect, or...
USE C++!!!! Encryption and Decryption are two cryptographic techniques. Encryption is used to transform text to...
USE C++!!!! Encryption and Decryption are two cryptographic techniques. Encryption is used to transform text to meaningless characters, and decryption is used to transform meaningless characters into meaningful text. The algorithm that does the encryption is called a cipher. A simple encryption algorithm is Caesar cipher, which works as follows: replace each clear text letter by a letter chosen to be n places later in the alphabet. The number of places, n, is called the cipher key. For example, if...
Problem Definition: Problem: Given an array of integers find all pairs of integers, a and b,...
Problem Definition: Problem: Given an array of integers find all pairs of integers, a and b, where a – b is equal to a given number. For example, consider the following array and suppose we want to find all pairs of integers a and b where a – b = 3 A = [10, 4, 6, 16, 1, 6, 12, 13] Then your method should return the following pairs: 4, 1 15, 12 13, 10 A poor solution: There are...
The main goal is to implement two recursive methods, each is built to manipulate linked data...
The main goal is to implement two recursive methods, each is built to manipulate linked data structures. To host these methods you also have to define two utterly simplified node classes. 1.) Add a class named BinaryNode to the project. This class supports the linked representation of binary trees. However, for the BinaryNode class Generic implementation not needed, the nodes will store integer values The standard methods will not be needed in this exercise except the constructor 2.) Add a...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT