Question

Construct a recursive definition for f(x) = xy, where y is the reverse of x, over...

Construct a recursive definition for f(x) = xy, where y is the reverse of x, over the alphabet {a,b}

Homework Answers

Answer #1

Here , where y is the reverse of x.

Let's assume the string is abbab, then is abbabbabba.

A string over is either or of the form ax or bx, where x is any arbitary string.

f(x) = (x)(reverse of x)

Hence,

-------------------------END---------------------

Please give a thumbs up(upvote) if you liked the answer.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Evaluate F · dr, where F(x, y) = <(xy), (3y^2)> and C is the portion of...
Evaluate F · dr, where F(x, y) = <(xy), (3y^2)> and C is the portion of the circle x^2 + y^2 = 4 from (0, 2) to (0, −2) oriented counterclockwise in the xy-plane.
Integrate the function f over the given region f(x,y) =xy over the triangular region with vertices...
Integrate the function f over the given region f(x,y) =xy over the triangular region with vertices (0,0) (6,0) and(0,9)
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S...
Compute the surface integral of F(x, y, z) = (y,z,x) over the surface S, where S is the portion of the cone x = sqrt(y^2+z^2) (orientation is in the negative x direction) between the planes x = 0, x = 5, and above the xy-plane. PLEASE EXPLAIN
Determine if each of the following recursive definition is a valid recursive definition of a function...
Determine if each of the following recursive definition is a valid recursive definition of a function f from a set of non-negative integers. If f is well defined, find a formula for f(n) where n is non-negative and prove that your formula is valid. f(0) = 1, f(n) = -f(n-1) + 1 for n ≥ 1 f(0) = 0, f(1) = 1, f(n) = 2f(n-1) +1 for n ≥ 1 f(0) =0, f(n) = 2f(n-1) + 2 for n ≥...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where x = 1, 2, 3; y = 1, 2, x + y ≤ 4 , that is, (x, y) are {(1, 1),(1, 2),(2, 1),(2, 2),(3, 1)} . (a) Find c > 0 . (b) Find μX (c) Find μY (d) Find σ^2 X (e) Find σ^2 Y (f) Find Cov (X, Y ) (g) Find ρ , Corr (X, Y ) (h) Are X...
find the integral of f(x,y,z)=x over the region x^2+y^2=1 and x^2+y^2=9 above the xy plane and...
find the integral of f(x,y,z)=x over the region x^2+y^2=1 and x^2+y^2=9 above the xy plane and below z=x+2
Let F be the defined by the function F(x, y) = 3 + xy - x...
Let F be the defined by the function F(x, y) = 3 + xy - x - 2y, with (x, y) in the segment L of vertices A (5,0) and B (1,4). Find the absolute maximums and minimums.
Suppose that f(x,y) = x2−xy+y2−3x+3y with −3≤x,y≤3 1. The critical point of f(x,y) is at (a,b)....
Suppose that f(x,y) = x2−xy+y2−3x+3y with −3≤x,y≤3 1. The critical point of f(x,y) is at (a,b). Then a= and b= 2.Absolute minimum of f(x,y) is and absolute maximum is
z= f(x,y) = xy-2x-3y+6 has one critical point (x,y,z). Please find it 2) f(xx)= 3) f(xy)=
z= f(x,y) = xy-2x-3y+6 has one critical point (x,y,z). Please find it 2) f(xx)= 3) f(xy)=
Suppose f(x,y)=(x-y)(1-xy) Find the following a.) The local maxima of f b.) The local minima of...
Suppose f(x,y)=(x-y)(1-xy) Find the following a.) The local maxima of f b.) The local minima of f c.) The saddle points of f
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT