Use the Bisection Method to locate all solutions of the
following equations. Sketch the
function by using Matlab’s plot command and identify three
intervals of length one that
contain a root. Then find the roots to six correct decimal places.
(a) 2x3 − 6x − 1 = 0
(b) ex−2 + x3 − x = 0 (c) 1 + 5x − 6x3 − e2x = 0
**MUST BE DONE IN MATLAB AND NEEDS CODE
MATLAB CODE:
FUNCTION :
function [x, e] = MyBisectFunc (f,a1,b1,number)
format long
c1 = f(a1); d1 = f(b1);
if c1*d1 > 0.0
error ('Func has same sign at both endpoints .')
end
for i = 1:number
x = (a1 + b1 )/2;
y = f(x);
disp ([ x y])
if y == 0.0
e = 0;
break
end
if c*y < 0
b=x;
else
a=x;
end
end
x = (a1 + b1 )/2;
e = (b1-a1 )/2;
(a) 2x3 − 6x − 1 = 0:
MAIN FUNCTION
%f = @(x) exp(x)-2+x^3-x;
f = @(x) 2*x^3-6*x-1;
%f= @(x) 1+5*x-6*x^3-exp(2*x);
n=50;
a=-100;
b=100;
x = mybisect (f,a,b,n);
fprintf('x = %.6f\n',x);
output:
X=1.810038
(b) ex−2 + x3 − x = 0
MAIN FUNCTION:
f = @(x) exp(x)-2+x^3-x;
%f = @(x) 2*x^3-6*x-1;
%f= @(x) 1+5*x-6*x^3-exp(2*x);
n=50;
a=-100;
b=100;
x = mybisect (f,a,b,n);
fprintf('x = %.6f\n',x);
OUTPUT----
X=0.819432
(c) 1 + 5x − 6x3 − e2x = 0
MAIN FUNCTION:
%f = @(x) exp(x)-2+x^3-x;
%f = @(x) 2*x^3-6*x-1;
f= @(x) 1+5*x-6*x^3-exp(2*x);
n=50;
a=-100;
b=100;
x = mybisect (f,a,b,n);
fprintf('x = %.6f\n',x);
OUTPUT:
X=0.000000
PLOT FOR GRAPHS WITH THEIR INERVALS:
Get Answers For Free
Most questions answered within 1 hours.