Analysing Asymptotic Bounds (Marks: 3)
Prove the following using the definition of asymptotic order notation.
Example: 15n 3 + 10n 2 + 20 ∈ O(n3 )
Hint: Consider C = 15 + 10 + 20 = 45 and n0 := 1. Then 0 ≤ 12n 3 + 11n 2 + 10 ≤ Cn3 for all n ≥ n0.
a) n 2 + 3n 2 /(2+cos(n)) ∈ O(n 2 )
b) 2n 2 (log n) ∈ Ω(n(log n) 2 )
c) 10n 2/(n − 10) ∈ Θ(n)
a) T(n) = n 2 + 3n 2 /(2+cos(n))
Consider maximum possible value of T(n)
n 2 + 3n 2 /(2+cos(n)) <= n 2 + 3n 2 /(2) <= 2.5 n2
So for C = 2.5 and n0 = 1
0 <= n 2 + 3n 2 /(2+cos(n)) <= Cn2 for all n>= n0
Hence T(n) =O(n2)
=========================
b)
T(n) = 2n 2 (log n)
We know that n>=logn for all n>=1
Multiplying both side by 2nlogn
2n 2 (log n) >= 2n(log n) 2 >=0 for all n>=1
Hence for C =2 and n0 = 1 we have
2n 2 (log n) >= 2n(log n) 2 >=0 for all n>=1
Hence T(n) = Ω(n(log n) 2 )
===============================
c)
T(n) = 10n 2/(n − 10)
Let n0 = 11, Then
10n 2/(n − 10) >= 10n 2/(n)
10n 2/(n − 10) >= 10 n
Also we have,
10n 2/(n − 10) <= 11 *( 10n 2/n )
Because n-10 >= n/11 for all n>=11
Hence
10n 2/(n − 10) <= 110 n
So we have c1 = 10 and c2 = 110 such that
10n <= 10n 2/(n − 10) <= 110n for all n>= n0 where n0 = 11
Hence T(n) = Θ(n)
=========================
Please upvote.
Get Answers For Free
Most questions answered within 1 hours.