Question

Determine the effective stress increase in the soil at a depth of 4 m below the...

Determine the effective stress increase in the soil at a depth of 4 m below the footing of area 3 x 5 m2 under an axial load of 4500 kN. Also determine the increase in the stress due to a drop of the water table from originally 1 m below the footing to 5 m below the footing bottom.

Please help me with this question with graph and calculation details, thanks.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Part A A square foundation has a width of 2.0 m. The soil has a friction...
Part A A square foundation has a width of 2.0 m. The soil has a friction angle of φ' = 27 and c' = 15 kN/m2. The unit weight of the soil γ = 18 kN/m3. Determine the allowable gross load (kN) on the foundation with a factor of safety of of 3. Assume that the depth of the foundation is 2.0 m and that general shear failure occurs in the soil. Give only the numeric answer (no unit). Part...
SITUATION 2: EFFECTIVE STRESS An engineer investigates a granular soil deposit, 4 meters thick, overlaying a...
SITUATION 2: EFFECTIVE STRESS An engineer investigates a granular soil deposit, 4 meters thick, overlaying a 5 meter thick clay. The water table is present between the interface of the granular soil and the clay. The moist unit weight of the sand is 15.6 kN/m3 , while the clay has a saturated unit weight of 17.8 kN/m3 a.) What is the vertical effective stress at the bottom of the clay? b.) If the water table rises to the level of...
Determine the depth at which a circular footing of (2+0.4Y) m diameter be founded to provide...
Determine the depth at which a circular footing of (2+0.4Y) m diameter be founded to provide a factor of safety of 3, if it has to carry a safe load of (1500+10Y) kN. The foundation soil has a cohesion of 10kN/m2, an angle of internal resistance of (30 +Y)o. The water table is at the ground surface and the unit weight of the soil is 19 kN/m3. Use Terzaghi’s Analysis. y=2
A soil with a unit weight of 20 kN/m3 is loaded on the ground surface by...
A soil with a unit weight of 20 kN/m3 is loaded on the ground surface by a uniformly distributed load of 500 kN/m2 over a circular area 4 m diameter (see Fig. below). Calculate the vertical stress at depth 5 m below the center and edge of the circular area. Assume the Bousinesq conditions apply. Assume the Westergaard conditions apply. Sudject: Geotechnical Analysis Please make numbers readable
2- An isolated square footing 2 m × 2 m is founded at a depth of...
2- An isolated square footing 2 m × 2 m is founded at a depth of 1.5 m below the ground surface, in an extended layer of C- soil. Soil angle of internal friction ()=25o, while C = 20 kN/m2. Density b = 16.5 kN/m3. Determine the net and gross allowable bearing capacity of this soil at foundation level, assuming a factor of safety equals 3.
A 1.5 m square 0.4 thick footing supports a column load of 350 kN. The underlying...
A 1.5 m square 0.4 thick footing supports a column load of 350 kN. The underlying soil has a unit weight of 18 kN/m3 and the ground water table is 2 m below the ground surface. Compute the change is vertical stress and final vertical stress beneath the corner of this footing at a depth of 5 m using the 2:1 and Boussinesq methods. The footing is placed on the ground surface. Include selfweight of the footing. Discuss the differences...
Part A Determine the depth factor If under the corner of a square flexible foundation with...
Part A Determine the depth factor If under the corner of a square flexible foundation with B = 4 m. Df = 4 m and H = 9 m. The Poisson ratio of the foundation soil is 0.4. Part B A long strip foundation (B = 6 m) is embedded at the depth of 2 m in saturated clay with cu = 120 kN/m2, OCR = 3 and PI = 50. Estimate the elastic settlement (mm) of the foundation under...
2: Two meters of fill (=2.04 Mg/m3) are compacted over a large area of soil (thus...
2: Two meters of fill (=2.04 Mg/m3) are compacted over a large area of soil (thus 100% of its influence is felt throughout the depth). Above the compacted fill, a 3*3m spread footing loaded with 3000 kN is placed. Assume that the average density of the soil is 1.68 Mg/m3, and the water table is very deep. Then it is required to (a) compute and plot the profile of effective vertical stresses at the middles of ten 2m intervals or...
Using the data in Textbook Problem 8.8: a. Plot the vertical effective consolidation stress versus void...
Using the data in Textbook Problem 8.8: a. Plot the vertical effective consolidation stress versus void ratio on both arithmetic and semi-log graphs. For the arithmetic graph, constrain the vertical axes to 0.55 and 0.95; and the horizontal to 0 to 1,500 kPa; for the semi-log graph, use the same vertical axis constraints, but use 10 kPa and 10,000 kPa to ease interpretation. Plot the data points only, and draw in a smooth curve by hand. Plot each graph on...
Solve for me the question below: A 2 m x 4 m flexible loaded area shown...
Solve for me the question below: A 2 m x 4 m flexible loaded area shown in the figure below. Applies a uniform pressure of 150 kN/m2 to underlying silty sand. Estimate the elastic settlement below the foundation. Check problem 9.6 of the 9th edition. Thanks
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT