Question

A reinforced concrete column, 5.0 m high has a cross section of 400 mm x 400...

A reinforced concrete column, 5.0 m high has a cross section of 400 mm x 400 mm. it is reinforced by four steel bars each 20 mm in diameter and carries a load of 1000 kN. Young’s modulus for steel is 200,000 N/mm2 and for concrete is 15,000 N/mm2. Determine the deformation in mm?

please show solution

Homework Answers

Answer #1

Given : RCC column cross section =400mm×400 mm

Diameter of steel bar = 20mm

Ec = Young's modulus of concrete

Es =Young's modulus of steel

L = 5 m = 5000 mm

Load = 1000 kN

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A column is made of concrete and reinforced with a W-section steel with an area of...
A column is made of concrete and reinforced with a W-section steel with an area of 2000 mm2. The dimension of the column is 300mm x 350mm. The column is subjected to an axial load of 100 kN. What will be the deformed length of the column? Use Es = 200 GPa and Ec = 25 GPa.
A short reinforced concrete column is subjected to a 700 kips axial compressive load. The modulus...
A short reinforced concrete column is subjected to a 700 kips axial compressive load. The modulus of elasticity of plain concrete and steel are 4,500,000 psi and 29,000,000, respectively, and the cross-sectional area of steel is 3.0% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel bars. Calculate the modulus of elasticity of the reinforced concrete, as well as how much load is...
(30 pts) A short reinforced concrete column is subjected to a 1000 kN axial compressive load....
(30 pts) A short reinforced concrete column is subjected to a 1000 kN axial compressive load. The moduli of elasticity of plain concrete and steel are 25 GPa and 207 GPa, respectively, and the cross-sectional area of steel is 2% of that of the reinforced concrete. Considering the column as a structural member made of a composite material and subjected to load parallel to the steel rebars, calculate the following: a. the modulus of elasticity of the reinforced concrete b....
A reinforced concrete beam is constructed with Grade 30 concrete which has a cross section of...
A reinforced concrete beam is constructed with Grade 30 concrete which has a cross section of 450 mm x 660 mm (b = 450 mm and D = 660 mm). The length of the beam is 5 m. The elastic modulus of the concrete is 32.8 GPa. A uniformly distributed live load of 23 kN/m is acting on the beam. Determine (a) the design bending moment on this beam for strength limit state, (b) modular ratio assuming Es = 200...
1. (a) Explain the difference between columns which are short and slender and those which are...
1. (a) Explain the difference between columns which are short and slender and those which are braced and unbraced. (b) Calculate the ultimate axial load capacity of a short-braced column supporting an approximately symmetrical arrangement of beams assuming that it is 500 mm square and is reinforced with eight 20 mm diameter bars. Assume that fcu = 40 N/mm2, fy = 500 N/mm2 and the concrete cover is 25 mm. Design the shear reinforcement for the column. 2. (a) A...
3. Calculate the load carrying capacity and percentage of reinforcement for a short rectangular column of...
3. Calculate the load carrying capacity and percentage of reinforcement for a short rectangular column of cross section dimension 280 mm x 500 mm is reinforced with 4 bars of 25 mm diameter, 2 bars of 20 mm diameter and 2 bars of 12 mm diameter. Use M30 grade concrete and Fe 500 grade steel. Also design a 4 legged ties necessary for this section.
Knowing that the reinforced concrete beam cross section effective depth is d = 310 mm and...
Knowing that the reinforced concrete beam cross section effective depth is d = 310 mm and the properties of materials used are f'c = 28 MPa and fy = 420MPa and the external ultimate bending moment Mu = 254 KN.m with strain in tension steel reinforcement equal to 0.005 . The width of the beam is Select one : a . 511 b . 385 c . 460 mm d . 640
An iron wire of 10 m long with a cross section area of 2.0 mm2 is...
An iron wire of 10 m long with a cross section area of 2.0 mm2 is used to support a 400-kg load.  Its elongation is (in mm)    (a) 1.5   (b) 9.8    ( c) 15.8  (d) 37.9  ΔL/Lo =(F/A)/Y A wire 10 m long with a cross section area of 3 mm2 stretches by 12 mm when a 500-kg mass was suspended from it.  The Young’s modulus for this wire  is (in Pa)   (a) 1.5   (b) 9.8     ( c) 15.8     (d) 37.9                                        Y = (F/A)/(ΔL/Lo) When a pressure of 3 MPa is...
A rod has a square cross section of (5 x 5) mm. length of the rod...
A rod has a square cross section of (5 x 5) mm. length of the rod is 120 cm. The allowable stress is 400 MPa. After applying the load (F), square section changes to (4.95 x 4.95) mm. 1. What is the type of the load (F), is it tension or compression? 2. What is the longitudinal strain in steel rod? 3. What is the modulus of elasticity of the material of the rod? 4. What is the value of...
WITH COMPLETE SOLUTION A welded steel girder having the cross section of two fabricated 280 mm...
WITH COMPLETE SOLUTION A welded steel girder having the cross section of two fabricated 280 mm x 25 mm flange and a 600 mm x 15 mm web plate. The plates are joined by four fillet welds that run continuously for the length of the 6 m span girder. Each weld has an allowable load of 330 kN/m. 1.Determine the maximum allowable shear force V for the girder in kN. 2. Calculate the maximum bending stress of the girder if...