Question

the position of a particle when t=0 is 9.0m and its velocity is 3.0 m/s. from...

the position of a particle when t=0 is 9.0m and its velocity is 3.0 m/s. from t=0 to t=3.5s the acceleration of a particle is a= 8 + 6t + 3t^2 + t^3 m/s^2 . From t=3.5s until it comes to rest, its acceleration is a= -8 m/s^2 . Determine the total travel time and the total distance.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The function s(t) describes the position of a particle moving along a coordinate line, where s...
The function s(t) describes the position of a particle moving along a coordinate line, where s is in feet and t is in seconds. s(t) = 3t2 - 6t +3 A) Find the anti-derivative of the velocity function and acceleration function in order to determine the position function. To find the constant after integration use the fact that s(0)=1. B) Find when the particle is speeding up and slowing down. C) Find the total distance from time 0 to time...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and...
A) A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the velocity of the particle as a function of time. ii) Determine the position of the particle as a function of time. (Explanation please )
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves...
A particle starts from the origin with velocity 5 ?̂m/s at t = 0 and moves in the xy plane with a varying acceleration given by ?⃗ = (2? ?̂+ 6√? ?̂), where ?⃗ is in meters per second squared and t is in seconds. i) Determine the VELOCITY and the POSITION of the particle as a function of time.
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at...
If the acceleration of a particle is given by a(t)=2t-1 and the velocity and position at time t=0 are v(0)=0 and S(0)=2. 1. Find a formula for the velocity v(t) at time t. 2. Find a formula for the position S(t) at time t. 3. Find the total distance traveled by the particle on the interval [0,3].
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.
The position of a particle for t > 0 is given by →r (t) = (3.0t...
The position of a particle for t > 0 is given by →r (t) = (3.0t 2 i ^ − 7.0t 3 j ^ − 5.0t −2 k ^ ) m. (a) What is the velocity as a function of time? (b) What is the acceleration as a function of time? (c) What is the particle’s velocity at t = 2.0 s? (d) What is its speed at t = 1.0 s and t = 3.0 s? (e) What is...
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
The position ? of a particle moving in space from (t=0 to 3.00 s) is given...
The position ? of a particle moving in space from (t=0 to 3.00 s) is given by ? = (6.00?^2− 2.00t^3 )i+ (3.00? − ?^2 )j+ (7.00?)? in meters and t in seconds. Calculate (for t = 1.57 s): a. The magnitude and direction of the velocity (relative to +x). b. The magnitude and direction of the acceleration (relative to +y). c. The angle between the velocity and the acceleration vector. d. The average velocity from (t=0 to 3.00 s)....
A particle moves according to a law of motion s = f(t), t ≥ 0, where...
A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. f(t) = t3 − 9t2 + 15t (a) Find the velocity at time t. v(t) =      (b) What is the velocity after 4 s? v(4) =  ft/s (c) When is the particle at rest? t =  s (smaller value) t =  s (larger value) (d) When is the particle moving in the positive direction? (Enter your answer...
A particle is moving along a straight line, and its position is defined by s =...
A particle is moving along a straight line, and its position is defined by s = (t2 - 6t +6) m. At t=6 seconds, find the following : a. the acceleration of the particle b. The average speed c. the average velocity