Question

While the swing bridge is closing with a constant rotation of 0.5 rad/s, a man runs...

While the swing bridge is closing with a constant rotation of 0.5 rad/s, a man runs along the roadway at a constant speed of 5 ft/s relative to the roadway. Determine his velocity and acceleration at the instant d = 15 ft. (Answer using Cartesian vector)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2) A merry-go-round is rotating with a constant angular velocity of ω = 1.5 rad/s. There...
2) A merry-go-round is rotating with a constant angular velocity of ω = 1.5 rad/s. There is a red line painted across the diameter of the merry-go-round. A beetle is traveling towards the center of the merrygo-round along the red line with a constant speed of 2 m/s relative to the merry-go-round. a) Find the velocity of the beetle as measured by someone standing on the ground when the beetle is 0.5 m away from the center of the merry-go-round....
At the instant shown, the car at A is traveling 10 m/s at 45° SE around...
At the instant shown, the car at A is traveling 10 m/s at 45° SE around the curve with radius of curvature of 100 m, while increasing its speed at 8 m/s sq.  The car at B is traveling at 18.5 m/s along the straightway eastward and increasing its speed at 5 m/s sq.  Determine the relative velocity and relative acceleration of B with respect to A at this instant. The normal component of acceleration for car A makes a 45° with...
At the instant shown, the car at A is traveling 10 m/s at 45° SE around...
At the instant shown, the car at A is traveling 10 m/s at 45° SE around the curve with radius of curvature of 100 m, while increasing its speed at 8 m/s sq. The car at B is traveling at 18.5 m/s along the straightway eastward and increasing its speed at 5 m/s sq. Determine the relative velocity and relative acceleration of B with respect to A at this instant. The normal component of acceleration for car A makes a...
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a...
A small object with mass 4.10 kg moves counterclockwise with constant speed 1.35 rad/s in a circle of radius 3.05 m centered at the origin. It starts at the point with position vector 3.05î m. Then it undergoes an angular displacement of 8.65 rad. (a) What is its new position vector? m (b) In what quadrant is the particle located and what angle does its position vector make with the positive x-axis? Second  at ??° (c) What is its velocity? m/s...
An internal mechanism is used to maintain a constant angular rate Ω = 0.05 rad/s about...
An internal mechanism is used to maintain a constant angular rate Ω = 0.05 rad/s about the z-axis of the spacecraft as the telescopic booms are extended at a constant rate. The length l is varied from essentially zero to 3 m. The maximum acceleration to which the sensitive experiment modules P may be subjected is 0.011 m/s^2. Calculate the velocity of P when the boom in fully extended 1-Calculate the velocity of P when the boom in fully retracted...
1. A car speeds up from 15 m/s to 35 m/s in a time of 5.0...
1. A car speeds up from 15 m/s to 35 m/s in a time of 5.0 s. What is its acceleration? 2. A 20-kg crate slides along a rough horizontal floor. The coefficients of friction between the crate and the floor are μs max =0.5, and μk =0.25. How strong is the friction force that acts on the crate as it slides across the floor? 3. A man pushes a 100-kg couch across a carpeted floor. As he pushes, the...
Bicyclist carries a 5 kg package while going with the constant steady cruising velocity v1=6.1m/s. He...
Bicyclist carries a 5 kg package while going with the constant steady cruising velocity v1=6.1m/s. He can throw the package with a velocity equal to the cruising velocity. Using the mass of the bike and the passenger, find his final speed immediately after a) he throws the package in the direction of the motion b) he throws the package in the opposite direction of the motion c) he throws the package upward d) he throws the package perpendicularly 90 degrees...
A little confused on these Motion problems: An airplane with a speed of 95.3 m/s is...
A little confused on these Motion problems: An airplane with a speed of 95.3 m/s is climbing upward at an angle of 38.1 ° with respect to the horizontal. When the plane's altitude is 542 m, the pilot releases a package. (a) Calculate the distance along the ground, measured from a point directly beneath the point of release, to where the package hits the earth. (b) Relative to the ground, determine the angle of the velocity vector of the package...
1. A 25 kg skydiver has a speed of 20 m/s at an altitude of 350...
1. A 25 kg skydiver has a speed of 20 m/s at an altitude of 350 m above the ground. Determine the kinetic energy possessed by the skydiver. 2. If a cruise ship travels 150 km to the south and then 250 km to the west, what is the ship’s displacement from its starting point? 3. A train is accelerating at a rate of 5 m/s . If its initial velocity is 15 m/s, what is its speed after 10...
Assessment Identify the Variables! In rotational kinematics - the variables are: t = time, which is...
Assessment Identify the Variables! In rotational kinematics - the variables are: t = time, which is measured in s (for seconds) θ = angle = what angle did the object turn thru, usually measured radians ωO = initial angular velocity = the rotational speed of the object at the beginning of the problem, which is measured in rad/s ω = final angular velocity = the rotational speed of the object at the end of the problem, which is measured in...