Question

Determine the total force per unit length acting on a 4.8 m high retaining wall. The...

Determine the total force per unit length acting on a 4.8 m high retaining wall. The soil that is backfilled level behind the wall is a granular soil with a total unit weight of 18.2 kN/m3 and a saturated unit weight of 19.6 kN/m3. Use an at-rest earth pressure coefficient for the soil which has an internal angle of friction of 26 degrees. The water table is expected to rest at a depth of 1.5 below the ground surface. Report your answer in terms of kN as a whole number.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Determine the total force per unit length acting on a 3.6 m high retaining wall. The...
Determine the total force per unit length acting on a 3.6 m high retaining wall. The soil that is backfilled level behind the wall is a granular soil with a total unit weight of 18.4 kN/m3 and a saturated unit weight of 19.5 kN/m3. The at-rest earth pressure coefficient for the soil is 0.47. The water table is expected to raise to a depth of 2.5 below the ground surface. A surcharge of 59 kPa is applied above the soil...
a five meter retaining wall has to retain backfill of sandy soil having a unit weight...
a five meter retaining wall has to retain backfill of sandy soil having a unit weight 18.2 kn/m3 and angle of internal friction 32 degree,the surface of the backfill in inclined at an angle of 10 degree to the horizontal determine:the magnitude and point of application of the active thrust on the wall,draw a diagram of given situation ,and determine total active earth pressure acting with vertical or with horizontal.
For the 8m high retaining wall, the top layer is sand with internal friction angle Ø=25°...
For the 8m high retaining wall, the top layer is sand with internal friction angle Ø=25° and unit weight is 18.2 kN/m3 and the bottom layer is gravel with internal friction angle Ø=33° and unit weight is 21.8 kN/m3 . There is no cohesion in both of the soil layers. Calculate the thrust per meter length of the wall Pa and draw the lateral earth pressure diagram.
A wall is supported on a 1.0 m wide strip footing located 1.5 m below the...
A wall is supported on a 1.0 m wide strip footing located 1.5 m below the ground surface. The surrounding soil has a dry unit weight of 17.5 kN/m3, a saturated unit weight of 19.0 kN/m3, cohesion of 8 kPa and angle of internal friction of 26°. Groundwater was located 2m below ground surface. Using a factor of safety of 3, determine the allowable bearing capacity if a) the footing is considered infinitely long, and b) the footing is 8...
A 6-m-high retaining wall is to support a soil with unit weight 17.4 kN/m3, soil Friction...
A 6-m-high retaining wall is to support a soil with unit weight 17.4 kN/m3, soil Friction angle 26°, and cohesion c14.36 kN/m2. Determine the Rankine active force per unit length of the wall both before and after the tensile crack occurs, and determine the line of action of the resultant in both cases
) A reinforced earth retaining wall is to be 30 ft high (H=30 ft). - Backfill:...
) A reinforced earth retaining wall is to be 30 ft high (H=30 ft). - Backfill: unit weight 110 pcf, internal friction angle 33° - Metal strip reinforcement: vertical spacing 3 ft, horizontal spacing 4 ft, width of reinforcement 5”, yield stress of reinforcement 35,000 psi, friction angle between the soil and reinforcement is 24°, FS pullout failure = 2, FS tensile failure =2 - Assume ??′ = 2 3??′ - Corrosion rate: 0.0006 in/year for the 1st 2 year...
Design of Cantilever type retaining wall mainly dimensioning of retaining wall, design of stem and check...
Design of Cantilever type retaining wall mainly dimensioning of retaining wall, design of stem and check for sliding. Cantilever retaining wall to retain earth embankment 4.4 m high above ground level Density of earth = 18 kN/m3 The embankment is horizontal at its top. Angle of repose of soil = 30° Safe bearing capacity of soil = 200 kN/m2 Coefficient of friction between soil and concrete = 0.7 Characteristic strength of concrete (fck) = 35 N/mm2 Characteristic strength of steel...
A 6.3 m high retaining wall supports a 4.5 m soil backfill having a cohesion of...
A 6.3 m high retaining wall supports a 4.5 m soil backfill having a cohesion of 25 kPa and an angle of internal friction of 30 ̊. The soil backfill was subjected to a laboratory test it was found out that it has a moist volume of 0.01055 m3, a moist weight of 0.1935 kN. After oven drying, it has a weight of 0.1668 kN and from analysis it has a combined volume of air and water of 0.004477479 m3....
when you have a thin flexible retaining wall with height 10 ft, unit weight of soil...
when you have a thin flexible retaining wall with height 10 ft, unit weight of soil 110 pcf, international friction angle 25 degree, zero cohesion what will be resultant lateral force per unit length acting on the wall in lbs?
A 10 ft wall retains soil with a horizontal surface that has 115 pcf unit weight,...
A 10 ft wall retains soil with a horizontal surface that has 115 pcf unit weight, a friction angle of 26 degrees, and an effective cohesion c’= 50 psf. The water table is at 5ft depth. Assuming Rankine active lateral earth pressures and hydrostatic conditions, what is the total horizontal thrust that the wall feels
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT