Question

An azimuth of a line is 116 degrees 14 minutes 8 seconds. What is its bearing?  Give...

An azimuth of a line is 116 degrees 14 minutes 8 seconds. What is its bearing?  Give your answer in decimal degrees to 6 decimal places. Give the direction at the end as two letters together.

Homework Answers

Answer #1

To convert the azimuth into bearing we must first determine the quadrant in which the line lies. For this the given azimuth is converted completely into degrees as shown.

Then as the bearing is greater than 90 and less than 180 it lies in second quadrant. Now as bearing is denoted with respect to either south or north. The angle between the line and the South is found as 180-116.235556 = 63.764444°

Therefore the bearing of the line whose azimuth is 116° 14' 8" is S63.764444E

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the bearing of line AB? The bearing of line EA is N 38 degrees...
What is the bearing of line AB? The bearing of line EA is N 38 degrees 27 minutesW, and the interior angle at A is 113 degrees 7 minutes.   Give your answer in decimal degrees to 6 decimal places. Give the direction at the end as two letters. What is the bearing of line AB? The bearing of line EA is N 38 degrees 27 minutesW, and the interior angle at A is 113 degrees 7 minutes.   Give your answer in decimal...
Data: Height (inches) Running Speed (seconds) 60 8 55 11 56 10 52 12 48 14...
Data: Height (inches) Running Speed (seconds) 60 8 55 11 56 10 52 12 48 14 44 16 47 13 52 12 The attached spreadsheet contains data from a random sample of eight elementary school children. Each child was measured for height (in inches) and timed in the 40-yard dash (in seconds). What is z' for the correlation between height and speed in this sample? (Give your answer to at least 3 decimal places)
Height (inches) Running Speed (Seconds) 60 8 55 11 56 10 52 12 48 14 44...
Height (inches) Running Speed (Seconds) 60 8 55 11 56 10 52 12 48 14 44 16 47 13 52 12 The attached spreadsheet contains data from a random sample of eight elementary school children. Each child was measured for height (in inches) and timed in the 40-yard dash (in seconds). What is z' for the correlation between height and speed in this sample? (Give your answer to at least 3 decimal places)
Consider the grouped frequency distribution. Class Limits 3-5 6-8 9-11 12-14 15-17 f 9 6 5...
Consider the grouped frequency distribution. Class Limits 3-5 6-8 9-11 12-14 15-17 f 9 6 5 12 11 (a) Find the mean. (Give your answer correct to two decimal places.) (b) Find the variance. (Give your answer correct to two decimal places.) (c) Find the standard deviation. (Give your answer correct to two decimal places.)
A national grocer’s magazine reports the typical shopper spends 8 minutes in line waiting to check...
A national grocer’s magazine reports the typical shopper spends 8 minutes in line waiting to check out. A sample of 18 shoppers at the local Farmer Jack’s showed a mean of 7.1 minutes with a standard deviation of 2.7 minutes. Is the waiting time at the local Farmer Jack’s less than that reported in the national magazine? Use the 0.100 significance level. What is the decision rule? (Negative amount should be indicated by a minus sign. Round your answer to...
Consider the grouped frequency distribution. Class Limits 3-5 6-8 9-11 12-14 15-17 f 7 11 9...
Consider the grouped frequency distribution. Class Limits 3-5 6-8 9-11 12-14 15-17 f 7 11 9 3 7 (a) Find the mean. (Give your answer correct to two decimal places.) (b) Find the variance. (Give your answer correct to two decimal places.) (c) Find the standard deviation. (Give your answer correct to two decimal places.)
A subway train on the Red Line arrives every 8 minutes during rush hour. We are...
A subway train on the Red Line arrives every 8 minutes during rush hour. We are interested in the length of time a commuter must wait for a train to arrive. The time follows a uniform distribution. Find the probability that the commuter waits between two and three minutes. (Enter your answer as a fraction.) State "60% of commuters wait more than how long for the train?" in a probability question. (Enter your answer to one decimal place.) Find the...
The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug...
The temperature at a point (x, y) is T(x, y), measured in degrees Celsius. A bug crawls so that its position after t seconds is given by x = sqrt(1 + t) , y = 8 + 1 /8 t, where x and y are measured in centimeters. The temperature function satisfies Tx(3, 9) = 9 and Ty(3, 9) = 1. How fast is the temperature rising on the bug's path after 8 seconds? (Round your answer to two decimal...
Project K costs $50,000, its expected cash inflows are $8,000 per year for 8 years, and...
Project K costs $50,000, its expected cash inflows are $8,000 per year for 8 years, and its WACC is 14%. What is the project's MIRR? Round your answer to two decimal places.
Let X represent the time it takes from when someone enters the line for a roller...
Let X represent the time it takes from when someone enters the line for a roller coaster until they exit on the other side. Consider the probability model defined by the cumulative distribution function given below. 0 x < 3 F(x) = (x-3)/1.08 3 < x < 4.08 1 x > 4.08 a) What is E(X)? Give your answer to three decimal places.   b) What is the value c such that P(X < c) = 0.78? Give your answer to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT