Question

A discharge of 2.8m^3/s flows through a hydraulic turbine. On the 1 m inlet pipe at...

A discharge of 2.8m^3/s flows through a hydraulic turbine. On the 1 m inlet pipe at elevation 43.5 m, a pressure gage reads 345 kPa. On the 1.5 m discharge pipe at elevation 39, a vacuum gage reads 150 mm of mercury. If the total head lost through pipes and turbines between elevation 43.5 and 39 is 9 m, what power may be expected from the machine?

Homework Answers

Answer #1

comment for any doubt about this solution thank you

Don't forget to upvote if you got your answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A discharge of 2.8 m3 /s flows through a hydraulic turbine. On the 1 m inlet...
A discharge of 2.8 m3 /s flows through a hydraulic turbine. On the 1 m inlet pipe at elevation 43.5 m, a pressure gage reads 345 kPa. On the 1.5 m discharge pipe at elevation 39, a vacuum gage reads 150 mm of mercury. If the total head lost through pipes and turbines between elevation 43.5 and 39 is 9 m, what power may be expected from the machine?
1. The diameter of the discharge pipe of a centrifugal pump is 15 cm and the...
1. The diameter of the discharge pipe of a centrifugal pump is 15 cm and the that of the intake pipe is 20 cm The pressure gage connected to the discharge pipe at the pump outlet reads 207 kPa, and the vacuum gage connected to the intake pipe at the pump inlet reads 25 cm of mercury. If the pump discharge is 84.7 L/s and the power needed to run the pump is 35 HP, what is the pump efficiency?
A centrifugal pump with a 10 cm suction pipe and a 7.5 cm diameter discharge pipe...
A centrifugal pump with a 10 cm suction pipe and a 7.5 cm diameter discharge pipe has a measured capacity of 0.019 m3/s (water), a suction side vacuum of 20 cm mercury (relative density = 13.6) and a discharge pressure of 240345 N/m2 (gage).  The suction and discharge pipes are at the same elevation.  Assuming that the head loss due to friction is negligible, what is the pump power required
A particular swimming pool has one inlet and one outlet pipe. The diameter of the inlet...
A particular swimming pool has one inlet and one outlet pipe. The diameter of the inlet pipe is 1 cm. The diameter of the outlet pipe is 10 cm. The average velocity of the flow in both inlet and outlet pipes is 0.1 m/s. The pipes are very old and rusty, so e = 0.2 mm. The dynamic viscosity is 1 x 10-3 N-s/m^2 The kinematic viscosity is 1 x 10-6 m^2/s (A) What’s the head loss per meter of...
The mean velocity of water in a 150 mm horizontal pipe is 0.9 m/s. Calculate the...
The mean velocity of water in a 150 mm horizontal pipe is 0.9 m/s. Calculate the loss of head through an abrupt contraction to 50 mm diameter. If the pressure in the 150 mm pipe is 345 kPa, what is the pressure in the 50 mm pipe, neglecting pipe friction?
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
Air flows steadily through an adiabatic turbine, entering at 1.4 MPa, 600°C, and 178 m/s and...
Air flows steadily through an adiabatic turbine, entering at 1.4 MPa, 600°C, and 178 m/s and leaving at 150 kPa, 200°C, and 210 m/s. The inlet of the turbine is 105 cm2 . Assume that air is an ideal gas with constant specific heat. Given CP = 1.013 kJ/kgK. Estimate: i) the mass flow rate of the air ii) the power output of the turbine, in kW
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of...
P2) Steam flows steadily through an adiabatic turbine in a power plant. The inlet conditions of the steam are 6 MPa, 400 °C and 119 cm2 . The exit conditions are 40 kPa, 92 percent quality, 50 m/s and 20 kg/s. Determine the power output.
A steam turbine has an inlet of 3 kg/s water at 1.2 MPa, 500°C with velocity...
A steam turbine has an inlet of 3 kg/s water at 1.2 MPa, 500°C with velocity of 16 m/s. The exit is at 150 kPa, 250°C and very low velocity. Find the power produced and the rate of entropy generation.
Methane gas is being pumped through a 305-m length of 52.5-mm-ID steel pipe at the rate...
Methane gas is being pumped through a 305-m length of 52.5-mm-ID steel pipe at the rate of 41.0 kg/(m2 · s). The inlet pressure is p1 = 345 kPa abs. Assume isothermal flow at 288.8 K. p2 = 298.4 kPa. What is the velocity (V2) at the end of the pipe? The viscosity is 1.04 × 10?5 Pa · s. (Answer V2= 20.62 m/s, show all work)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT