Determine the nominal compressive strength Pn of a short column which subjected to biaxial bending ex- 250 mm , ey- 150 mm h - 650 mm , b - 450 mm , reinforcement 8 28.ties 10 mm , cover - 40mm fc - 28 Mpa , fy 420 MPa
b = 450 mm
h = 650 mm
cover = 40 mm
fc = 28 MPa
fy = 420 MPa
ex = 250 mm
ey = 150 mm
1)calculate g
g = Ast/Ag = 4926/(450*650) = 0.0168
2) For x direction (bending about y axis)
Compute the ratio ex/h
ex/h = 250/650 = 0.385
Comput the ratio
= (d - d' ) / h = [650-2(40)-2(10)-28]. / 650 = 0.803
Draw the line of ex/h on diagram A-9b (for = 0.75) and diagram A-9c ( = 0.9)
Diagram A-9b(for = 0.75)
Pn/Ag = Pu/Ag =1.32
Diagram A-9c (for = 0.9)
Pn/Ag = Pu/Ag = 1.45
Use linear interpolation to compute the values for ( = 0.803)
Pn / Ag
= 1.32 + (1.45 - 1.32)*(0.803 - 0.75)/(0.9 - 0.75)
=1.366 ksi
Pn/Ag = Pu*0.145 / 650*450 = 1.366
Puy = 1.366*650*450*10-3 / 0.145 = 2755.4 KN
Pny = Puy/ = 2755.4/0.65 = 4239.1 KN
= 0.65 compression - controlled section (from interaction diagram)
3)For y direction (bending about x axis)
Compute the ratio ey/h
ey/h = 150/650 = 0.23
Compute the ratio
= (d - d')/h = 450-2(40)-2(10)-28/450 = 0.715
Draw line of ex/h on diagram A-9a (=0.6) and diagram A-9b (for =0.75)
Diagram A-9a (=0.6)
Pn/Ag = Pu/Ag =1.49
Diagram A-9b (for = 0.75)
Pn/Ag = Pu/Ag = 1.6
Use linear interpolation to compute the value for (= 0.715)
Pn/Ag = 1.49 + (1.6 - 1.49)*(0.715 - 0.6)/(0.75 - 0.6) = 1.574 ksi
Pn/Ag = Pu * 0.145 / (650*450) = 1.574
Pux = 1.574*650*450*10-3/0.145 = 3175.14 KN
Pnx = Pux/ = 3175.14/0.65 = 4884.83 KN
Determine Pno for the section dimensions h = 650 mm and b=450 mm and g=0.0168
Pno=Ag(0.85fc' (1-g ) + g fy)
=450*650(0.85*28(1-0.0168) + 0.0168*420)10-3
=8908.43 KN
Note that Pno can be defined directly from interaction diagram when ex = ey = 0
From diagram A-9 for analysis of
Pn/Ag=3
Pno = 3Ag/ = 3*650*450*10-3/(0.415*0.65) = 9310.34 KN
Substituting Pnx, Pny, Pno in bresler equation
1/Pn = 1/Pnx + 1/Pny - 1/Pno
Pn= 3001.14 KN
Pu = Pn = 0.65*3001.14 = 1950.738 KN
Hence the nominal compressive strength = 1950.738 KN
Get Answers For Free
Most questions answered within 1 hours.