Question

A 250 mm diameter of cast iron pipe flows 39.3 L/s of SAE 10 oil along...

A 250 mm diameter of cast iron pipe flows 39.3 L/s of SAE 10 oil along 500 m length. Given: dynamic viscosity, μ and density, ρ of SAE 10 oil are 1.04 x 10-1 Ns/m2 and 917 kg/m3 respectively. By assuming the flow is laminar, determine energy head and pressure loss due to pipe friction using Hagen-Poiseuille equation and friction factor, f.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
SAE 30 Oil at 60oF flows through a 1.5 m diameter pipe at a velocity of...
SAE 30 Oil at 60oF flows through a 1.5 m diameter pipe at a velocity of 2.5 m/s. (3 points) What type of flow is occurring in the pipe:                 (2 points) If the pipe is made out of cast iron, determine the friction factor for flow through this pipe.
11. Oil is being pumped into a 10.0 mm diameter pipe with a Reynolds number of...
11. Oil is being pumped into a 10.0 mm diameter pipe with a Reynolds number of 2100. The oil density is 855 kg / m3 and its viscosity is 2.1 x 10 -2 Pa. S A) What is your speed in the pipeline? B) You want to keep the same Reynolds number of 2100 and the same speed that in part (a) using a second fluid with a density of 925 kg / m3 and a viscosity of 1.5 x...
Given the oil sythetic motor at 20°C through a 5 cm diameter smooth pipe at 1...
Given the oil sythetic motor at 20°C through a 5 cm diameter smooth pipe at 1 million N/h with density, ρ = 891 kg/m3 and dynamic viscosity, µ = 0.29 kg/m.s. Determine the type of flow with the detail calculation.
4. Oil of viscosity 2E-5 m2/s flows at 210 L/s through a pipe of roughness 0.038...
4. Oil of viscosity 2E-5 m2/s flows at 210 L/s through a pipe of roughness 0.038 mm. The head loss through the pipe is 0.42 m for every 100 m pipe length. Find the theoretical pipe diameter, in m, required to handle this situation.
0.0425 m3/s of heavy oil flows from pt. A (z = 31 m) to pt. B...
0.0425 m3/s of heavy oil flows from pt. A (z = 31 m) to pt. B (z = 21 m) through a 914 m long and 15 cm diameter steel pipe. γwater = 9800 kg/m2s2, νoil (kinematic viscosity) = μ/ρ = 4 cm2/sec, specific gravity of oil = 0.92. (a) Is the flow laminar or turbulent? (b) What is the Head Loss in meters? (c) If the gage pressure at A is 1065 kPa, what is the gage pressure at...
The oil flows in a vertical pipe that has overall height of 30 m. The pressure...
The oil flows in a vertical pipe that has overall height of 30 m. The pressure at the inlet of the pipe (before the pump) and at the location of oil delivery at the end of the pipe are both atmospheric. Determine: 1- The head supplied to the flow by the pump. 2- The pressure at the exit of the pump. 2- The pressure at midway location of the pipe between    inlet and exit. Oil viscosity and density are...
Crude oil flows through a level section of the Alaskan pipeline at a rate of 250...
Crude oil flows through a level section of the Alaskan pipeline at a rate of 250 thousand cubic meters per day. The pipe inside diameter is 1000 mm; its roughness is equivalent to that of galvanized iron. The maximum allowable pressure is 8.3 MPa; the minimum pressure required to keep dissolved gases in solution in the crude oil is 340 kPa. The crude oil has SG = 0.93; its viscosity at the pumping temperature of 60 oC is  μ= 0.017 kg/(m...
1- Water flows in a 10 m long and 4 cm diameter pipe contains 4 elbows...
1- Water flows in a 10 m long and 4 cm diameter pipe contains 4 elbows ( KL= 0.2 ) at velocity 8 m/s. Calculate the total head losses when the friction factor f=0.03 35.56 m 22.07 m 27.07 m 15.46 m 2- water flows in a 10 m long and 5 cm diameter horizontal pipe at rate 15 l/s Calculate the pressure drop Take the density of water 1000 kg/m3 and the dynamic viscosity 0.001 kg/m.s 74.13 kPa 96.41...
A 6.8-km cast-iron (new, uncoated) pipeline conveys 285 L/s of water at 10oC. If the pipe...
A 6.8-km cast-iron (new, uncoated) pipeline conveys 285 L/s of water at 10oC. If the pipe diameter is 32 cm, determine the friction head loss (in m) calculated using the Hazen-Williams equation. Use typical values for pipe roughness, as needed. Ch = 130 for new , uncoated pipeline Select one: a. 99.53 b. 552.8 c. 225.2 d. 146.1
Design a cast iron (kd=8*10‐4 ft) pressurized system (pipe diameter) that would convey water at 2...
Design a cast iron (kd=8*10‐4 ft) pressurized system (pipe diameter) that would convey water at 2 ft3/s from two elevated tanks separated 200 ft long. The difference in water surface elevation between the tanks is 20 ft and the kinematic viscosity is 1.217*10‐5 ft2/s. Along the system the entrance loss and the exit loss have a KL of 0.5 and 1, respectively. Two 90 degrees bends are present (KL=3) and a global valve (KL=10) is also installed along the system.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT