Question

A circular aluminum [a = 23.0 × 10−6 /°C] ring is to be mounted on a...

A circular aluminum [a = 23.0 × 10−6 /°C] ring is to be mounted on a circular steel tube. The ring will be heated so that it expands enough to slip onto the steel tube. After the ring cools, there will be a tight fit between the aluminum ring and the steel tube. (This process is called shrink fit.)  

The outside diameter of the steel tube is 440 mm, and the inside diameter of the aluminum ring is 438 mm. Assume that the temperature of the steel tube remains constant and that an extra 0.5 mm in diameter is required for the ring to clear the steel tube. Compute the temperature increase required to expand the ring sufficiently so that it can be slipped onto the steel tube.   

Homework Answers

Answer #1

the solution is given.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At 20∘C, the hole in an aluminum ring is 2.100 cm in diameter. You need to...
At 20∘C, the hole in an aluminum ring is 2.100 cm in diameter. You need to slip this ring over a steel shaft that has a room-temperature diameter of 2.107 cm To what common temperature should the ring and the shaft be heated so that the ring will just fit onto the shaft? Coefficients of linear thermal expansion of steel and aluminum are 12×10−6 K−1 and 23×10−6 K−1 respectively.
At 20∘C, the hole in an aluminum ring is 2.200 cm in diameter. You need to...
At 20∘C, the hole in an aluminum ring is 2.200 cm in diameter. You need to slip this ring over a steel shaft that has a room-temperature diameter of 2.204 cm . To what common temperature should the ring and the shaft be heated so that the ring will just fit onto the shaft? Coefficients of linear thermal expansion of steel and aluminum are 12×10-6K-1 and 23×10-6K-1 respectively. Express your answer in degrees Celsius to two significant figures.
At 20∘C, the hole in an aluminum ring is 2.400 cm in diameter. You need to...
At 20∘C, the hole in an aluminum ring is 2.400 cm in diameter. You need to slip this ring over a steel shaft that has a room-temperature diameter of 2.404 cm .To what common temperature should the ring and the shaft be heated so that the ring will just be fitted on the shaft? Coefficients of linear thermal expansion of steel and aluminum are 12*10-6 K-1 and 23*10-6 K-1 respectively.
(a) A circular copper ring at 19.0°C has a hole with an area of 9.95 cm2....
(a) A circular copper ring at 19.0°C has a hole with an area of 9.95 cm2. What minimum temperature must it have so that it can be slipped onto a steel metal rod having a cross-sectional area of 10.0 cm2? 167 °C (b) Suppose the ring and the rod are heated simultaneously. What change in temperature of both will allow the ring to be slipped onto the end of the rod? (Assume no significant change in the coefficients of linear...
A brass ring of diameter 10.00 cm at 15.7°C is heated and slipped over an aluminum...
A brass ring of diameter 10.00 cm at 15.7°C is heated and slipped over an aluminum rod of diameter 10.01 cm at 15.7°C. Assume the average coefficients of linear expansion are constant. (a) To what temperature must the combination be cooled to separate the two metals? °C Is that temperature attainable? Yes No     (b) What if the aluminum rod were 10.04 cm in diameter? °C Is that temperature attainable?
A brass ring of diameter 10.00 cm at 22.0°C is heated and slipped over an aluminum...
A brass ring of diameter 10.00 cm at 22.0°C is heated and slipped over an aluminum rod of diameter 10.01 cm at 22.0°C. Assume the average coefficients of linear expansion are constant. (a) To what temperature must the combination be cooled to separate the two metals? °C (b) What if the aluminum rod were 10.02 cm in diameter? °C
A brass ring of diameter 10.00 cm at 17.8°C is heated and slipped over an aluminum...
A brass ring of diameter 10.00 cm at 17.8°C is heated and slipped over an aluminum rod of diameter 10.01 cm at 17.8°C. Assume the average coefficients of linear expansion are constant. (a) To what temperature must the combination be cooled to separate the two metals? °C (b) Is that temperature attainable? Yes or No     (c) What if the aluminum rod were 9.16 cm in diameter? °C (d) Is that temperature attainable? Yes or No    
At 20.0°C, an aluminum ring has an inner diameter of 5.00 cm and a brass rod...
At 20.0°C, an aluminum ring has an inner diameter of 5.00 cm and a brass rod has a diameter of 5.055 cm. (a)If only the ring is warmed, what temperature must it reach so that it will just slip over the rod? (b) If both the ring and the rod are warmed together, what temperature must they both reach so that the ring barely slips over the rod? (c) Why might the temperature value of part (b)pose problems for this...
How can differential analysis be applied here to determine if it would be profitable to invest...
How can differential analysis be applied here to determine if it would be profitable to invest in new equipment to increase capacity for a constrained resource? KRAYDEN’S CYCLE COMPONENTS INTRODUCTION: COMPANY, PRODUCT, AND SUPPLY CHAIN Krayden’s Cycle Components (KCC) is a high-end specialty fabricator that manufactures one product with many variants. The basic product is known as a rolling chassis, a key component used in manufacturing motorcycles. While there are variations across the industry, a rolling chassis typically consists of...